MHB Calculating Limits without Cheating or L'Hopital's Rule

Click For Summary
The discussion centers on calculating limits without using calculators or L'Hôpital's Rule. The first limit, as \( x \) approaches 0, is correctly evaluated to be 0.5, although the method used was questioned. A new limit involving logarithmic expressions is introduced, but the hint provided does not clarify the approach for the user. The conversation highlights the importance of understanding the underlying principles of limits rather than relying solely on shortcuts or approximations.
Yankel
Messages
390
Reaction score
0
Hello all,

I am trying to calculate the following limits, without cheating and using a calculator (by setting a very close value of the required value of x). And no l'hopital's rule either if possible :-)

The limits are:

\[\lim_{x\rightarrow 0} \frac{ln(x^{2}+e^{x})}{ln(x^{4}+e^{2x})}\]

\[\lim_{x\rightarrow \infty } \frac{ln(x^{2}+e^{x})}{ln(x^{4}+e^{2x})}\]

Thank you.
 
Last edited:
Physics news on Phys.org
mmm...after rethinking the problem. If on the denominator, I take the power of 2 up, and then using ln rules takes it out of the ln, I get 0.5. Is this the answer for both cases ?

If so, I apologize, and here is a new question instead :-)

\[\lim_{x\rightarrow \infty }[(x+2)ln(x+2)-2(x+1)ln(x+1)+xln(x)]\]
 
Last edited:
Yankel said:
mmm...after rethinking the problem. If on the denominator, I take the power of 2 up, and then using ln rules takes it out of the ln, I get 0.5. Is this the answer for both cases ?

If so, I apologize, and here is a new question instead :-)

\[\lim_{x\rightarrow \infty }[(x+2)ln(x+2)-2(x+1)ln(x+1)+xln(x)]\]

Hint: use that

$$\lim_{x \to \infty } x \log(x+1)-x \log(x) = 1 $$
 
I'm afraid that the hint is not helping, I don't know how to proceed.

In addition, my solution to the first limits is wrong (final answer is correct, but the way is wrong).
 
The first one (using the limit definition of $e$ and approximation to Taylor series):

$$\lim_{x\to0}\dfrac{\ln(x^2+e^x)}{\ln(x^4+e^{2x})}=\lim_{x\to0}\dfrac{\ln(x^2+[(x+1)^{1/x}]^x)}{\ln(x^4+[(2x+1)^{1/x}]^x)}=\lim_{x\to0}\dfrac{\ln(x^2+x+1)}{\ln(x^4+2x+1)}\sim\dfrac{\ln(e^x)}{\ln(e^{2x})}=\dfrac12$$

Third one:

$$\ln\left(\lim_{x\to\infty}\dfrac{(x+2)^{x+2}\cdot x^x}{(x+1)^{2(x+1)}}\right)\sim\ln(1)=0$$
 
greg1313 said:
The first one (using the limit definition of $e$ and approximation to Taylor series):

$$\lim_{x\to0}\dfrac{\ln(x^2+e^x)}{\ln(x^4+e^{2x})}=\lim_{x\to0}\dfrac{\ln(x^2+[(x+1)^{1/x}]^x)}{\ln(x^4+[(2x+1)^{1/x}]^x)}=\lim_{x\to0}\dfrac{\ln(x^2+x+1)}{\ln(x^4+2x+1)}\sim\dfrac{\ln(e^x)}{\ln(e^{2x})}=\dfrac12$$

This technique (with the limit definition of $e$) is questionable. Consider using it to solve

$$\lim_{x\to0}\dfrac{e^x-x-1}{x^2}$$
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K