Calculating magnetic field given dl, current, and radius vector

AI Thread Summary
The calculation of the magnetic field involved using the cross product of dl and the radius vector, yielding a result of 0.00195i + 0.00365k. The subsequent steps included dividing by the magnitude of the radius cubed and multiplying by the current and permeability constant. However, a participant noted that the cross product appears to be off by a factor of ten, and the final answer's component ratios seem inconsistent. It was suggested to double-check the calculations and ensure proper unit usage. Accurate calculations are crucial for obtaining the correct magnetic field values.
desperatestudent123
Messages
1
Reaction score
0
Homework Statement
A short current element dl = (0.500 mm)j^ carries a current of 5.70 A in the same direction as dl . Point P is located at r = ( -0.730 m)i^+ (0.390m)k^. Find the magnetic field at P produced by this current element.
Relevant Equations
dB=(u_0/4pi)*((I dl X r)/r^3)
|r|=square root ((-.73^2)+(0.39^2))
I used the above equation, and started with getting the cross product of dl and r, which was equal to 0.00195i+0.00365k. From there, I divided each component by the magnitude of radius cubed (0.827^3). I then multiplied by I and u naught(u_0=4pi*10^-7), and then divided by 4pi. The answer I got (1.96*10^-9)i + (3.67*10^-10)k. I'm not sure why this is wrong.
 
Physics news on Phys.org
Hello @desperatestudent123,
:welcome: ##\qquad ## !
The cross product seems to be off by a factor of 10 !
And how you come from 1.95 10-3 ##\hat\imath## + 3.65 10-3 ##\hat\jmath\ \ ## (ratio around 1 to 2) to the final answer (ratio 10 to 2) seems strange, too.

Funny enough, one of the components is correct :wideeyed:

In short: check your math ! And: use units !

##\ ##
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top