Calculating pressure from a known equation of energy

Click For Summary
The discussion focuses on calculating pressure using energy equations during heat transfer transitions. The participant attempts to derive relationships between energy changes and pressure but struggles with integral calculations. Key equations involve the change in energy across states and the specific heat capacity, leading to insights about entropy changes. A potential relationship for pressure is proposed, incorporating temperature and volume dependencies. Despite progress, the participant remains uncertain about proving their findings and seeks further insights.
ForgetfulPhysicist
Messages
31
Reaction score
2
Homework Statement
Heat Engine with working substance characterized by energy E = g T^a V, with a>1 and g>0 being known coefficients. The values of P1, V1 are also known. Find P2 /P1 in terms of the known quantities.
Relevant Equations
dE = TdS - PdV
Screen Shot 2023-03-18 at 7.19.06 PM.png


My attempted solution is as follows:

Obviously the heat transfer happens during transitions 1->2 and 3->1.

It's also clear that
P1 = P3
V1 = V2

E2 - E1 = Integral[T dQ , from state 1 to state 2]

E3 - E2 = - Integral[P dV , from state 2 to state 3]

E1 - E3 = Integral[T dQ , from state 3 to state 1] + 7 P1 V1

But I can't find a way to perform any of these integrals or make any progress on this problem.

An attempt to calculate pressure is stuck at: p = - (dE/dV)_S = g a T^(a-1) (dT/dV)_S V + g T^a
 
Last edited:
Physics news on Phys.org
ForgetfulPhysicist said:
E2 - E1 = Integral[T dQ , from state 1 to state 2]

E1 - E3 = Integral[T dQ , from state 3 to state 1] + 7 P1 V1
Check the units in these equations.
 
Philip Koeck said:
Check the units in these equations.
Yes that was a typo. They should be written:
E2 - E1 = Integral[dQ , from state 1 to state 2]
E1 - E3 = Integral[dQ , from state 3 to state 1] + 7 P1 V1

One idea: I can calculate Cv = (dE/dT)_V = a g T^(a-1) V , and I also know Cv = T (dS/dT)_V which helps me know a little bit about the change of entropy from state 1 to 2.... but I'm still stuck.
 
Last edited:
ForgetfulPhysicist said:
Yes that was a typo. They should be written:
E2 - E1 = Integral[dQ , from state 1 to state 2]
E1 - E3 = Integral[dQ , from state 3 to state 1] + 7 P1 V1

One idea: I can calculate Cv = (dE/dT)_V = a g T^(a-1) V , and I also know Cv = T (dS/dT)_V which helps me know a little bit about the change of entropy from state 1 to 2.... but I'm still stuck.
I also made a little progress on this by using $$\left(\frac{\partial E}{\partial V}\right)_T=-\left[P-T\left(\frac{\partial P}{\partial T}\right)_V\right]=gT^a$$which leads to $$P=\frac{gT^a}{a-1}+Tf(V)$$
 
  • Like
Likes Philip Koeck
I derived the equation for entropy variation also, but I've as yet not been able to figure out a way that it can be used to provide an answer to this problem: $$dS=\frac{ga}{(a-1)}d(T^{a-1}V)+f(V)dV$$
 
  • Like
Likes Philip Koeck
From dimensional considerations, it makes sense to me that the function f(V) should be proportional to R/V, where R is the gas constant. If f(V) were equal to R/v, we would have $$\frac{PV}{RT}=z=1+\frac{1}{a-1}\frac{E}{RT}$$I'm unable to prove this yet, but I may proceed as if it is the case and see where it takes me.
 
So is there some elegant way to do this or am I just supposed to follow my nose and sub the Taylor expansions for terms in the two boost matrices under the assumption ##v,w\ll 1##, then do three ugly matrix multiplications and get some horrifying kludge for ##R## and show that the product of ##R## and its transpose is the identity matrix with det(R)=1? Without loss of generality I made ##\mathbf{v}## point along the x-axis and since ##\mathbf{v}\cdot\mathbf{w} = 0## I set ##w_1 = 0## to...

Similar threads

  • · Replies 6 ·
Replies
6
Views
314
Replies
4
Views
365
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
Replies
26
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
9K