Hi!(adsbygoogle = window.adsbygoogle || []).push({});

Hopefully I'm not being too stupid, but I'm trying to work out the radiation dose received at a particular point in space being subjected to a high rate of proton flux.

I think.. that I am right in working it out this way so far, for instance if the flux rate of Protons >100Mev is 10^7 cm3 s-1

(100*10^6 ev) * (10^7 cm3 s-1) * (1.602×10^−19 Joules) = 1.602*10^-4 Joules cm3 s-1

Based on 1cm3 of body mass being 1g then:

(1.602*10^-4)*1000g = 0.1602 Joules/Kg (s-1)

= 0.1602 Gy (s-1)

0.1602 * 5 Proton Q.F. = 0.801 Sv (s-1)

So would the calculations be correct in stating that if you were suspended in an area of space with a Proton flux of 10^7 cm3 s-1 with proton energies of 100Mev you would be receiving an effective dose of 0.801 Sv / Second ?

It's probably all garbage, but if anyone can help I would be most grateful :)

Thanks!

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Calculating radiation dose from flux

Loading...

Similar Threads - Calculating radiation dose | Date |
---|---|

B Calculating heat from decay of a radioactive isotope | Feb 24, 2017 |

Calculation of gamma ray shielding value in liquids? | Nov 5, 2014 |

How to calculate radiation dose from neutron source. | Dec 16, 2010 |

Radiation pressure calculation (verification) | Oct 14, 2010 |

How to calculate the radiation view factor of a UV light ? | Sep 16, 2009 |

**Physics Forums - The Fusion of Science and Community**