MHB Calculating rates of two points moving along a circle

  • Thread starter Thread starter DaalChawal
  • Start date Start date
  • Tags Tags
    Circle Points
AI Thread Summary
The discussion focuses on calculating the speeds of two particles moving along a circular path. When moving in opposite directions, their rate of closure is the sum of their speeds, while moving in the same direction, the rate of opening is the difference between their speeds. A system of equations is set up to determine the speeds based on the distances traveled in a given time. The solution yields speeds of 18 ft/sec for the faster particle and 12 ft/sec for the slower particle. The distinction between speed and velocity is emphasized, clarifying that the problem specifically addresses speeds.
DaalChawal
Messages
85
Reaction score
0
1638445882433.png
Question 3
 
Mathematics news on Phys.org
Let $v_1 > v_2$ be the respective speeds (rates) in feet per second of the two particles.

Moving in opposite directions, their rate of closure is $(v_1+v_2)$

Moving in the same direction, their rate of opening is $(v_1-v_2)$

Set up a system of two equations and solve for both speeds.
 
Last edited by a moderator:
You have added them like they are moving on straight line...In circle velocity changes as direction is changing.
 
DaalChawal said:
You have added them like they are moving on straight line...In circle velocity changes as direction is changing.

If the two particles move in opposite directions, the sum of their respective distances traveled in 5 seconds will be one full circumference length when they meet again.

If the two particles move in the same direction, the faster particle will move ahead of the slower particle, hence the difference between their respective distances traveled in 25 seconds will be one full circumference length when they meet again.

Using this method, I get $v_1 = 18 \, ft/sec$ and $v_2 = 12 \, ft/sec$. You can check the results yourself.
 
This problem has nothing to do "velocity". The problem asks for their speeds, not their velocities.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top