MHB Calculating Real $(x,y,z)$ with System of Equations

Click For Summary
The discussion focuses on solving a system of equations involving real numbers \(x\), \(y\), and \(z\) with their greatest integer and fractional parts. The initial equations are \(x[x]+z\{z\}-y\{y\} = 0.16\), \(y[y]+x\{x\}-z\{z\} = 0.25\), and \(z[z]+y\{y\}-x\{x\} = 0.49\). A participant suggests summing the equations to simplify the problem, resulting in \(x[x]+y[y]+z[z] = 0.9\). Another user advises eliminating the greatest integer and fractional parts by using the identity \(x^2 = x[x] + x\{x\}\) and recommends manipulating the equations further, such as subtracting one from another. The conversation emphasizes the need for strategic algebraic manipulation to solve for the variables.
juantheron
Messages
243
Reaction score
1
Calculation of Real $(x,y,z)$ in

$x[x]+z\{z\}-y\{y\} = 0.16$

$y[y]+x\{x\}-z\{z\} = 0.25$

$z[z]+y\{y\}-x\{x\} = 0.49$

where $[x] = $ Greatest Integer of $x$ and $\{x\} = $ fractional part of x

My try:: Add $(i) + (ii)+(iii)$

$x[x]+y[y]+z[z] = 0.9$

Now I did not Understand How Can I proceed after that,

please Help me

Thanks
 
Mathematics news on Phys.org
jacks said:
Calculation of Real $(x,y,z)$ in

$x[x]+z\{z\}-y\{y\} = 0.16$

$y[y]+x\{x\}-z\{z\} = 0.25$

$z[z]+y\{y\}-x\{x\} = 0.49$

where $[x] = $ Greatest Integer of $x$ and $\{x\} = $ fractional part of x

My try:: Add $(i) + (ii)+(iii)$

$x[x]+y[y]+z[z] = 0.9$

Now I did not Understand How Can I proceed after that,

please Help me

Thanks

Hi jacks! :)

It seems to me that you need to get rid of all those "greatest integer" and "fractional part" thingies.
What draws my attention is that they only occur in conjunction with the same variable.
Perhaps it is useful to consider that $x^2=x([x]+\{x\})=x[x]+x\{x\}$?
You might for instance subtract (iii) from (i) and apply that...
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
762