MHB Calculating Real $(x,y,z)$ with System of Equations

juantheron
Messages
243
Reaction score
1
Calculation of Real $(x,y,z)$ in

$x[x]+z\{z\}-y\{y\} = 0.16$

$y[y]+x\{x\}-z\{z\} = 0.25$

$z[z]+y\{y\}-x\{x\} = 0.49$

where $[x] = $ Greatest Integer of $x$ and $\{x\} = $ fractional part of x

My try:: Add $(i) + (ii)+(iii)$

$x[x]+y[y]+z[z] = 0.9$

Now I did not Understand How Can I proceed after that,

please Help me

Thanks
 
Mathematics news on Phys.org
jacks said:
Calculation of Real $(x,y,z)$ in

$x[x]+z\{z\}-y\{y\} = 0.16$

$y[y]+x\{x\}-z\{z\} = 0.25$

$z[z]+y\{y\}-x\{x\} = 0.49$

where $[x] = $ Greatest Integer of $x$ and $\{x\} = $ fractional part of x

My try:: Add $(i) + (ii)+(iii)$

$x[x]+y[y]+z[z] = 0.9$

Now I did not Understand How Can I proceed after that,

please Help me

Thanks

Hi jacks! :)

It seems to me that you need to get rid of all those "greatest integer" and "fractional part" thingies.
What draws my attention is that they only occur in conjunction with the same variable.
Perhaps it is useful to consider that $x^2=x([x]+\{x\})=x[x]+x\{x\}$?
You might for instance subtract (iii) from (i) and apply that...
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
1K
Replies
5
Views
1K
Replies
1
Views
1K
Replies
4
Views
2K
Replies
3
Views
1K
Replies
8
Views
245
Back
Top