Calculating Shear and Bending forces in a Cantilever Beam.

Click For Summary
SUMMARY

This discussion focuses on calculating shear forces and bending moments in a cantilever beam subjected to a point load and a uniformly distributed load (UDL). The beam is 2 meters long, with a UDL of 4 kN/m applied at Point B (0.8 m from the free end) and an upward point load of 2 kN at Point A (the free end). Key equations for equilibrium are emphasized, including summing moments and forces to determine reactions at the fixed end, Point C. The discussion clarifies that the UDL's effective point load acts at its midpoint if it is rectangular, and the total force from the UDL is derived from its area.

PREREQUISITES
  • Understanding of cantilever beam mechanics
  • Knowledge of equilibrium equations in structural analysis
  • Familiarity with shear force and bending moment diagrams
  • Ability to calculate moments and forces from distributed loads
NEXT STEPS
  • Study the calculation of reactions in fixed-end cantilever beams
  • Learn about shear force and bending moment diagrams for various loading conditions
  • Explore the effects of different shapes of uniformly distributed loads on cantilever beams
  • Investigate software tools for structural analysis, such as SAP2000 or ANSYS
USEFUL FOR

Students in civil engineering, structural engineers, and anyone involved in analyzing cantilever beams and their load responses.

mm391
Messages
65
Reaction score
0

Homework Statement



I am trying to work out the Shear force and bending moments in a simple cantilever bean with a point load and a U.D.L but am not sure of the equations or how to go about starting it. Its a 2 m long cantilever beam built into a wall at the right-hand end, Point C. A UDL is applied with a downward force of 4 kN/m at Point B (which is 0.8 m from the free end) to the wall. An upward force of 2 kN is applied to the free (left-hand) end, Point A.

Homework Equations



I presume you have to use equations for equilibrium but am not sure how to apply them.

The Attempt at a Solution

 
Physics news on Phys.org
mm391 said:

Homework Statement



I am trying to work out the Shear force and bending moments in a simple cantilever bean with a point load and a U.D.L but am not sure of the equations or how to go about starting it. Its a 2 m long cantilever beam built into a wall at the right-hand end, Point C. A UDL is applied with a downward force of 4 kN/m at Point B (which is 0.8 m from the free end) to the wall. An upward force of 2 kN is applied to the free (left-hand) end, Point A.

Homework Equations



I presume you have to use equations for equilibrium but am not sure how to apply them.

The Attempt at a Solution


first of all, you need to determine the reactions at the fixed end. what shape is the UDL? (rectangle, triangle etc). 4kn/m doesn't specify this.

a fixed end has 3 reactions. moment, force in y direction, force in x direction.

to find reactions, you need to sum the moments about a point (which will be equal to zero) then sum the forces in the y direction and the forces in the x direction. the sums will all be equal to zero. (you have no forces acting in the x direction, so just scratch that).

if you sum the moments about point A, you will have:

moment caused by shear force + moment caused by UDL + reaction moment of fixed end
support = 0

then

sum of forces in y direction:

- shear force - UDL + reaction y direction force of fixed end support = 0

notice the positive and negatives. the shear force and UDL are acting DOWN, the reaction of the fixed end has to COUNTERACT these forces so it points UP.


do you know how to find the moments about a point and how to find the points at which distributed loads act?
 
Am i righy in saying to find a moment you multiply the loads by the distance from the moment adding them togther and they should all = 0 (following sign convention).

To find the point at which the UDL acts you multiply the force by the length of the UDL and that force acts at the centre point of the UDL.
 
mm391 said:
Am i righy in saying to find a moment you multiply the loads by the distance from the moment adding them togther and they should all = 0 (following sign convention).

To find the point at which the UDL acts you multiply the force by the length of the UDL and that force acts at the centre point of the UDL.

yes and no. it depends on what shape the UDL is. is it a rectangular shape? then yes, the UDL "acts" at the midpoint of the UDL. however, if the UDL is the shape of let's say a triangle, it "acts" 1/3 of the distance from the bigger end of the triangle. the SUM of all the forces in the y direction will equal zero, the SUM of all the forces in the x direction will equal zero, and the SUM of all the moments about a POINT will equal zero.

basically for a UDL, you find the area of the UDL, then that number is the total force it is inducing on the structure. You just have to find where its acting as a point load, then take the distance from where its acting to the point you're using as a reference (sum of moments about a point = 0) and multiply distance * force = moment. make sure you include all forces in the summations.

its easier if i just draw this real quick. here's an example of calculating the reactions of a fixed end cantilever beam with JUST a UDL. i won't do your work for you, but if you calculate your reactions and post back here ill help more.

UDLHelp.jpg
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
3K
Replies
3
Views
13K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
9K