Calculating τ by knowing I is proportional to A^2

Click For Summary
SUMMARY

The discussion focuses on calculating the damping time constant τ of a vibrating string based on the relationship between sound intensity and amplitude. The intensity of the sound wave decreases by 8 dB, which corresponds to a decrease in intensity by a factor of 10^0.8. The participants clarify that the amplitude decreases by a factor of √10^0.8, leading to the equation e^-t/τ = 1/√10^0.8. The correct value for τ is determined to be 0.54 seconds, highlighting the importance of distinguishing between amplitude and intensity in calculations.

PREREQUISITES
  • Understanding of sound intensity and decibel scale
  • Familiarity with exponential decay and damping in physics
  • Knowledge of the relationship between amplitude and intensity
  • Basic algebra for manipulating logarithmic equations
NEXT STEPS
  • Study the relationship between sound intensity and amplitude in wave mechanics
  • Learn about exponential decay and its applications in physics
  • Explore the decibel scale and its implications in acoustics
  • Practice solving problems involving damping time constants in oscillatory systems
USEFUL FOR

Students studying physics, particularly in wave mechanics, acoustics, and anyone interested in understanding sound wave behavior and calculations related to damping in oscillatory systems.

Cc518
Messages
23
Reaction score
0

Homework Statement


A vibrating standing wave on a string radiates a sound wave with intensity proportional to the square of the standing-wave amplitude. When a piano key is struck and held down, so that the string continues to vibrate, the sound level decreases by 8.0 dB in 1.0 s.

What is the string's damping time constant τ ?

Homework Equations


I∝( 2asin(kx))^2
B=10log(I/1*10^-12)

The Attempt at a Solution


From 8dB, I got change in sound intensity is 6.31*10^-12 w/m2
Since the intensity is proportional to the the square of amplitude, the amplitude will decrease by (6.31*10^-12)^1/2
So I got

(6.31*10^-12)^1/2 = 2a - 2a•e^-t/τ =
2a (1- e^-t/τ)

I assumed sin(kx)=1 because we are looking at the greatest amplitude.
t=1s
I don’t know where to go from here as I don’t know what a is.

Since I don’t know what the original sound intensity is, I won’t be able to know the percentage the sound intensity has decreased in order to calculate the percentage the amplitude has decreased.

Any help is appreciated:)
 
Physics news on Phys.org
"Decibels" in this context is not an absolute measure of sound intensity (as in " a noise of 100 dB"), but a relative measure. 1 bel (10dB) is an intensity difference of a factor of 10. A decrease of 8 dB means a decrease by a factor of 100.8.
 
Thank you for reply:)
So does that mean amplitude will decrease by a factor of √10^0.8 ?
If so, then e^-t/τ =√10^0.8,
t=1, I got τ=1.08s which is not the right answer:(
Can anyone tell me where I went wrong?
Thank you!
 
mjc123 said:
... 1 bel (10dB) is an intensity difference of a factor of 10. A decrease of 8 dB means a decrease by a factor of 100.8.
What is not quite so clear from this, is that the 8dB is the intensity rather than the amplitude.
As you noted yourself, intensity ∝ square of amplitude. So the amplitude2 decreases by 8 dB, which means the amplitude decreases by ... ?

Cc518 said:
Thank you for reply:)
So does that mean amplitude will decrease by a factor of √10^0.8 ?
So it means A2 decreases by a factor of √10^0.8 (Though it may be easier to calculate it slightly differently, depending on your math preferences.)
 
Merlin3189 said:
So the amplitude2 decreases by 8 dB, which means the amplitude decreases by
Amplitude will decrease by √8dB, right?
Then why did you say
Merlin3189 said:
it means A2 decreases by a factor of √10^0.8
?
 
No. Not √8 dB.
If A is the ratio of amplitudes and the ratio of intensities is 8 dB,
$$ 8 = 10 log( A^2 ) \ \ ⇒ \ \ 8 = 20 log( A ) $$
$$so A^2 = 10^{0.8} \ \ and \ \ A = 10^{0.4} $$
$$so A^2 = 6.3 \ \ and \ \ A= 2.5 = \sqrt {6.3} $$
 
Cc518 said:
So does that mean amplitude will decrease by a factor of √10^0.8 ?
Yes. You can easily simplify that.
Cc518 said:
If so, then e^-t/τ =√10^0.8,
It decreases by that factor. Is that factor greater or less than 1?
 
haruspex said:
Yes. You can easily simplify that.

It decreases by that factor. Is that factor greater or less than 1?
The factor is less than 1?
A0/At=√10^0.8 and At=e-t/τ A0
Then e-t/τ = 1/√10^0.8
t=1,
I got τ=1.08s which is twice the answer, 0.54s, though, but I don’t see why I have to divide 1.08 by 2.
 
Cc518 said:
Then e-t/τ = 1/√10^0.8
yes, that's better
Cc518 said:
I got τ=1.08s which is twice the answer
Hmmm.. so do I. Looks like a confusion between amplitude and intensity.
 

Similar threads

Replies
16
Views
2K
Replies
3
Views
843
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
988
  • · Replies 11 ·
Replies
11
Views
2K
Replies
3
Views
3K
Replies
20
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K