Calculating the Distance that a Catapult can launch a Projectile

Click For Summary

Discussion Overview

The discussion revolves around calculating the distance a catapult can launch a projectile, focusing on the physics involved in the launch mechanism, including energy calculations and trajectory predictions. Participants explore both theoretical calculations and practical measurements related to the launch parameters.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant states the spring constant and stretch of the spring, indicating the need to calculate the energy stored in the spring that will convert to kinetic energy.
  • Another participant questions the necessity of calculations versus measurements, suggesting that knowing the launch speed and angle is essential for accurate predictions.
  • There are repeated suggestions to weigh the rock, compute its initial velocity, and measure the launch angle to predict the trajectory.
  • A participant raises the question of whether to account for the rotational energy of the lever arm, noting that the accuracy of predictions may depend on this consideration.
  • One participant provides a detailed torque equation related to the catapult's mechanics, including terms for mass moment of inertia and forces acting on the system, suggesting numerical integration to determine angular velocity and tangential velocity.
  • Another participant clarifies the launch context, correcting a misunderstanding about the launch position being from a deck railing rather than a window.

Areas of Agreement / Disagreement

Participants express various viewpoints on the importance of calculations versus measurements, and there is no consensus on the best approach to predict the launch distance. Some participants focus on theoretical calculations while others emphasize practical measurements.

Contextual Notes

There are unresolved assumptions regarding the effects of air resistance and the accuracy of different energy accounting methods. The discussion also highlights the complexity of the catapult's mechanics, which may require further exploration.

GopherTv
Messages
7
Reaction score
1
TL;DR
How do I calculate the distance to which a catapult can launch rocks of different mass?
1651026679094.png
1651026691408.png
I know the spring constant of my spring, 90.54 n/m
The spring is stretched 13.5 cm
Im launching of a deck that is 1.75 meters high
 
Physics news on Phys.org
How @GopherTv and welcome to PF.

How about measuring the distance? What is calculating going to do for you that measuring won't. If you want to calculate a number using a formula, at the very least you will need to know the speed and the angle at which the rock leaves the catapult. Also, it looks like you are shooting this out a window, so you will need to know the vertical height from the initial position of the rock to the ground.
 
  • Like
Likes   Reactions: erobz
GopherTv said:
I know the spring constant of my spring, 90.54 n/m
The spring is stretched 13.5 cm
Calculate the energy stored in the spring that will become kinetic energy.
Weigh the rock, compute the initial velocity for that rock.
Measure the launch angle. Predict the trajectory.
 
  • Like
Likes   Reactions: hutchphd
Baluncore said:
Calculate the energy stored in the spring that will become kinetic energy.
Weigh the rock, compute the initial velocity for that rock.
Measure the launch angle. Predict the trajectory.
Should I account for the rotational energy of the lever arm or will that be very little
 
GopherTv said:
Should I account for the rotational energy of the lever arm or will that be very little
The accuracy of the prediction will be dependent on how much energy accounting you do.
If you avoid computation by experimental calibration, then you could avoid much of the physics. You might then need to use standard rocks.
 
kuruman said:
Also, it looks like you are shooting this out a window
OP says that it is off a deck. The diagonal members on the bottom which you are taking to be the sill of a window appear to be the railing of a stairway leading down from the deck. He is launching from the deck railing. The corner of the window top that you imagine appears to be the curve of the downspout for the roof gutter.
 
Catapult 2.jpg

Summing the torques about the point I forgot to label ( also I didn't include the force of the weight of the rod in the diagram ):

$$ b F_s \sin \beta - r m g \cos \theta - \frac{r}{2} m_r g \cos \theta = \left( I_{r_G} + m_r \left( \frac{r}{2} \right)^2 + m r^2 \right) \frac{ d \omega }{dt} $$

Where;

## I_{r_G} ## is the mass moment of inertia (M.o.I) of the rod about its CM
## m_r ## is the mass of the rod
$$ F_s = k ( x - x_o ) $$

$$ \sin \beta = \frac{ \sqrt{d^2 + c^2} \sin \varphi }{x} $$

$$ \varphi = \pi - \left( \theta + \arctan \left( \frac{d}{c} \right) \right) $$

and

$$ x = \sqrt{ d^2 + c^2 + b^2 - 2 b \sqrt{d^2 + c^2} \cos \varphi } $$

You'll want to integrate this numerically to determine the angular velocity until the angel of launch (it should be close to ## \pi/2 ## ), and then extract the tangential velocity from:

$$ v = r \omega $$

From there its kinematics (ignoring air resistance )
Like I said, not an analytical result, but you can program it without much difficulty. If you have questions please feel free to comment.
 
Last edited:

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
7K