I Calculating the inverse of a function involving the error function

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
I have a probability distribution over the interval ##[0, \infty)## given by $$f(x) = \frac{x^2}{2\sqrt{\pi} a^3} \exp\left(- \frac{x^2}{4a^2} \right)$$From this I want to derive a formula for the inverse cumulative density function, ##F^{-1}##. The cumulative density function is a slightly nasty-looking but doable integral involving the error function,$$F(x) = \mathrm{erf}\left( \frac{x}{2a} \right) - \frac{x}{\sqrt{\pi} a} \exp \left( -\frac{x^2}{4a^2} \right)$$So it remains to invert this. Ideally I would like to find an analytic expression, but I haven't had much success.
 
Mathematics news on Phys.org
For a=1 the plot is
1712272242615.png


So the expected plot of the inverse function is

1712272420660.png

It seems difficult to get the anaytical form if not impossible.
 
I think it might be. Was just checking if there is a clever way.
 
The inverse function $$ F^{-1}(x) $$ of the cumulative density function $$ F(x) = erf(\frac{x}{2a}) – \frac{x}{\sqrt\pi a} exp(-\frac{x^2}{4a^2}) $$ can not be expressed in an analytic form.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top