I Calculating the inverse of a function involving the error function

Click For Summary
The discussion centers on deriving the inverse cumulative density function, F^{-1}, from the given probability distribution function, f(x). The cumulative density function, F(x), involves an integral that includes the error function, making it complex. Participants note that finding an analytic expression for the inverse function appears to be very challenging, if not impossible. The consensus is that there may not be a clever method to achieve an analytic form for F^{-1}(x). Overall, the difficulty lies in the nature of the error function and the resulting complexity of the cumulative density function.
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
I have a probability distribution over the interval ##[0, \infty)## given by $$f(x) = \frac{x^2}{2\sqrt{\pi} a^3} \exp\left(- \frac{x^2}{4a^2} \right)$$From this I want to derive a formula for the inverse cumulative density function, ##F^{-1}##. The cumulative density function is a slightly nasty-looking but doable integral involving the error function,$$F(x) = \mathrm{erf}\left( \frac{x}{2a} \right) - \frac{x}{\sqrt{\pi} a} \exp \left( -\frac{x^2}{4a^2} \right)$$So it remains to invert this. Ideally I would like to find an analytic expression, but I haven't had much success.
 
Mathematics news on Phys.org
For a=1 the plot is
1712272242615.png


So the expected plot of the inverse function is

1712272420660.png

It seems difficult to get the anaytical form if not impossible.
 
I think it might be. Was just checking if there is a clever way.
 
The inverse function $$ F^{-1}(x) $$ of the cumulative density function $$ F(x) = erf(\frac{x}{2a}) – \frac{x}{\sqrt\pi a} exp(-\frac{x^2}{4a^2}) $$ can not be expressed in an analytic form.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
1K