Undergrad Calculating the Rotation Curves of Galactic Disks

  • Thread starter Thread starter PhotonSSBM
  • Start date Start date
  • Tags Tags
    Curves Rotation
Click For Summary
The discussion focuses on the challenges of calculating the rotation curves of galactic disks, specifically addressing issues with integrating contributions from both baryonic matter and dark matter. The user is solving Poisson's Equation for an exponential disk model using Bessel Functions to determine the baryonic contribution, while also attempting to incorporate a spherical dark matter halo using the NFW density profile. Despite following established methods, discrepancies in the results have arisen, prompting a request for assistance in identifying potential errors in the calculations or plotting. The user has provided specific parameters for their model, which align with known values for the Milky Way Galaxy. The conversation highlights the complexity of accurately modeling galactic dynamics and the importance of verifying the rotation curve models used.
PhotonSSBM
Homework Helper
Messages
154
Reaction score
59
Ok, so I'll start off by saying this is NOT a homework problem, but it is a problem I'm having with a project I'm working on, and my supervisor has no clue as to why I'm getting the wrong results from a calculation I'm doing.

So as you all reading this likely know, we can model the rotation curves of galaxies solving Poisson's Equation for a disk and differentiating the solution to get the centripetal acceleration of a star at a given radius from that disk. This is how I'm trying to calculate the rotation speeds due to the baryons in the disk. Now, we also know that the disk mass isn't the only contribution to the acceleration of the stars, we have a spherical dark matter halo that contributes to it as well.

Here is how I'm performing these calculations in numerical python.

For the Baryons in the disk, I'm solving Poisson's Equation using an exponential disk model with Bessel Functions. The analytic result of the integration is this

##\frac{v^2}{R} = 4\pi G \Sigma_0R_dy^2[I_0(y)K_0(y)-I_1(y)K_0(y)]##

where I and K are Bessel functions of the first and second kind, Rd and Sigma_0 are scaling parameters, and y is R/2Rd.

For the dark matter halo, it's a sphere, so the math gets much easier, except I believe my analysis here is where the problem is.

When solving for the acceleration due to a spherical mass we get

##\sqrt{\frac{GM}{R}}##

When calculating M, we can integrate over the density distribution of the dark matter.

The density profile I'm choosing to use is the NFW Profile given by:

##\rho(r) = \frac{\rho_{critical}\delta_c}{(\frac{r}{R_c})(1+\frac{r}{R_c})^2}##

I then take the two contributions and add them under quadrature, the plots produced are posted below, where the blue curve is the velocity due to the Baryons, the Green from the DM Halo, and the Red is their combination.
figure_1.png


Can someone who knows a bit about plotting these curves tell me where I'm going wrong.

Note, the parameters for each scale length in this plot are as follows:

##\Sigma_0 = 5*10^7 \frac{Solar Masses}{kpc^2}##
##R_d = 25 kpc##
##\rho_{critical}\delta_c=5*10^7## this could also be where my calculation goes awry but I cannot find any papers with data on this quantity
## R_c=R_d/4##

Edit: Note that these scales are for what papers have found to be the scale quantities of the Milky Way Galaxy.
 
Astronomy news on Phys.org
UC Berkely, December 16, 2025 https://news.berkeley.edu/2025/12/16/whats-powering-these-mysterious-bright-blue-cosmic-flashes-astronomers-find-a-clue/ AT 2024wpp, a luminous fast blue optical transient, or LFBOT, is the bright blue spot at the upper right edge of its host galaxy, which is 1.1 billion light-years from Earth in (or near) a galaxy far, far away. Such objects are very bright (obiously) and very energetic. The article indicates that AT 2024wpp had a peak luminosity of 2-4 x...

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 72 ·
3
Replies
72
Views
10K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
3
Views
2K
Replies
11
Views
2K
  • · Replies 56 ·
2
Replies
56
Views
6K
  • · Replies 5 ·
Replies
5
Views
3K