Calculating the waste heat of Carnot engine

Click For Summary
The discussion centers on calculating the waste heat of a Carnot engine, with an initial waste heat estimate of 7405.9 J, which was later corrected to 6470 J. The efficiency was calculated as 0.35481 using the temperatures converted to Kelvin. Participants emphasized the importance of using the correct formulas for efficiency, specifically e = 1 - Qout/Qin, to avoid algebraic errors. It was suggested to solve the problem without numerical values for clarity and accuracy. The conversation highlights the need for precise expressions in thermodynamic calculations to ensure correct results.
JoeyBob
Messages
256
Reaction score
29
Homework Statement
See attached
Relevant Equations
e=1-(Tc/Th)

e=W/Qin

e=(Qin-Qout)/Qout
The answer is 6470 J.

So since I have the two temperatures I could calculate the efficiency. First I convert to kelvin then get an efficiency of 0.35481. Now I can use e=W/Qin to get Qin. I get a value of 10033.54J.

Now I can use e=(Qin-Qout)/Qout to get Qout, the waste heat. I get 7405.9 J.

Overview of calculations:

e=1-(295.66/458.25)=0.35481

Qin=W/e=3560/0.35481=10033.54 J

Qout=Qin/(e+1) = 10033.54/(1.35481) = 7405.9 J but answer is 6470 J.
 

Attachments

  • question.PNG
    question.PNG
    9.8 KB · Views: 181
Physics news on Phys.org
It looks like you messed up the algebra. I agree with your number for the efficiency but not with one of your expressions for it. For best results, try solving this without numbers, a recommendation that was made to you before.
You have ##e=1-\dfrac{Q_{out}}{Q_{in}}## and ##e=\dfrac{W}{Q_{in}}##. Can you eliminate ##Q_{in}## and get an expression relating ##Q_{out}## to ##e## and ##W?##
 
kuruman said:
It looks like you messed up the algebra. I agree with your number for the efficiency. Try solving this without numbers, a recommendation that you have so far ignored.
You have ##e=1-\dfrac{Q_{out}}{Q_{in}}## and ##e=\dfrac{W}{Q_{in}}##. Can you eliminate ##Q_{in}## get an expression relating ##Q_{out}## to ##e## and ##W?##

Qin=W/e so

e=1-Qout/(W/e)

e=1-eQout/W

1-e=eQout/W

(1-e)W/e = Qout

(1-0.35481)*3560/0.35481

Youre right, must have messed up my algebra somewhere because this gives the right answer.

Thanks.
 
JoeyBob said:
Youre right, must have messed up my algebra somewhere because this gives the right answer.
It's not the algebra, it's this: e=(Qin-Qout)/Qout.

When Qout = 0 you should expect efficiency of 1. Your expresion does not predict that. That is why I prefer to write it as ##e=1-\dfrac{Q_{out}}{Q_{in}}.## It reduces to 1 when no heat is wasted. I am mentioning this so that you will write the correct expression next time.
 
I would never go to the efficiency to solve this. I would write $$Q_{in}-Q_{out}=W$$ and $$\frac{Q_{in}}{T_{hot}}-\frac{Q_{out}}{T_{cold}}=0$$This is two linear algebraic equations in two unknowns.
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
14
Views
2K
  • · Replies 4 ·
Replies
4
Views
31K
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 14 ·
Replies
14
Views
9K
  • · Replies 2 ·
Replies
2
Views
3K