- #1
- 10
- 0
I'm doing some back of the envelope calculations for the potential of a turbine thermal generator using ammonia as a working fluid. I've never done thermodynamics before so I'm looking for a reality check.
Isotropic turbine work done by a unit mass is given as h2 - h1 or simply dh between the the state of the fluid before and after the turbine. The temperature of the gas at each state is the temperature at the vaporizer/condenser and the pressure is the vapor pressure of the gas at those temperatures.
I'm assuming I can substitute h2 and h1 in my turbine work equation for the specific enthalpy of a saturated gas hg at each temperature from an engineering lookup table for ammonia, and that this will give me the ideal energy per gram for my turbine subsystem.
Isotropic turbine work done by a unit mass is given as h2 - h1 or simply dh between the the state of the fluid before and after the turbine. The temperature of the gas at each state is the temperature at the vaporizer/condenser and the pressure is the vapor pressure of the gas at those temperatures.
I'm assuming I can substitute h2 and h1 in my turbine work equation for the specific enthalpy of a saturated gas hg at each temperature from an engineering lookup table for ammonia, and that this will give me the ideal energy per gram for my turbine subsystem.