- #1
Scootertaj
- 97
- 0
1. Essentially what I'm trying to do is find the asymptotic distributions for
a)
Y2
b) 1/Y and
c) eY where
Y = sample mean of a random iid sample of size n.
E(X) = u; V(X) = σ2
a) [tex]Y^2=Y*Y[/tex] which converges in probability to [tex]u^2[/tex],
[tex]V(Y*Y)=\sigma^4 + 2\sigma^2u^2[/tex]
So, [tex]\sqrt{n}*(Y^2 - u^2)[/tex] converges in probability to [tex]N(0,\sigma^4 + 2\sigma^2u^2) [/tex]
So, [tex]Y^2\sim N(u^2,\frac{\sigma^4 + 2\sigma^2u^2}{n})[/tex]
Is that right?
b) [tex]\frac{1}{Y}[/tex] converges in probability to [tex]\frac{1}{E(X)} = \frac{1}{u}[/tex]
[tex]V(\frac{1}{x}) = \frac{1}{σ^2}[/tex] ??
Thus,
[tex]\sqrt{n}(\frac{1}{Y} - \frac{1}{u})[/tex] converges in distribution to [tex]N(0,V(\frac{1}{x})*\frac{1}{n})[/tex]
What is V(1/X) ?
Am I on the right track?
a)
Y2
b) 1/Y and
c) eY where
Y = sample mean of a random iid sample of size n.
E(X) = u; V(X) = σ2
Homework Equations
a) [tex]Y^2=Y*Y[/tex] which converges in probability to [tex]u^2[/tex],
[tex]V(Y*Y)=\sigma^4 + 2\sigma^2u^2[/tex]
So, [tex]\sqrt{n}*(Y^2 - u^2)[/tex] converges in probability to [tex]N(0,\sigma^4 + 2\sigma^2u^2) [/tex]
So, [tex]Y^2\sim N(u^2,\frac{\sigma^4 + 2\sigma^2u^2}{n})[/tex]
Is that right?
b) [tex]\frac{1}{Y}[/tex] converges in probability to [tex]\frac{1}{E(X)} = \frac{1}{u}[/tex]
[tex]V(\frac{1}{x}) = \frac{1}{σ^2}[/tex] ??
Thus,
[tex]\sqrt{n}(\frac{1}{Y} - \frac{1}{u})[/tex] converges in distribution to [tex]N(0,V(\frac{1}{x})*\frac{1}{n})[/tex]
What is V(1/X) ?
Am I on the right track?
Last edited: