Calculation of matrix element for ##e^{+}e##-->##\mu^{+}\mu##

  • Thread starter Thread starter dark_matter_is_neat
  • Start date Start date
  • Tags Tags
    Quantum field theory
dark_matter_is_neat
Messages
34
Reaction score
1
Homework Statement
This is problem 5.4 from Schwartz's QFT and The Standard Model
It for me to calculate the matrix element of ##e^{+}e##-->##\mu^{+}mu## in the ultra relativistic limit in the center of mass frame using circular polarization instead of linear polarization which was done in section 5.3.
Relevant Equations
Setting the ##e^{+}e## axis as the z axis, the initial momentum vectors are:
p1 = (E, 0, 0, E), p2 = (E, 0, 0, -E)
The initial circular polarization vectors should be:
##\epsilon 1 = \frac{1}{\sqrt{2}}(0,1,i,0)## and ##\epsilon 2 = \frac{1}{\sqrt{2}}(0,1,-i,0)##
The final momentum vectors will be at some angle with respect to the z axis, so I will pick for these vectors to be rotated around the x axis by some angle ##\theta##.
So the final momentum vectors are:
p3 = E##(1, 0, sin\theta, cos\theta)## and p4 = E##(1, 0, -sin\theta, -cos\theta)##
The final circular polarization vectors should be the initial polarization vectors operated on by the same rotation so they should be:
##\epsilon 3 = \frac{1}{\sqrt{2}}(0,1,icos\theta,-isin\theta)## and ##\epsilon 4 = \frac{1}{\sqrt{2}}(0, 1, -icos\theta, isin\theta)##
Following the calculation done in section 5.3 of Schwartz's QFT and The Standard Model, the matrix element, M, should have two contributions M1 and M2.
M1=ϵ1ϵ3+ϵ1ϵ4
M2=ϵ2ϵ3+ϵ2ϵ4
However when I do these calculations I get that M1 = M2 = 1, ##|M|^{2} = |M1|^{2} + |M2|^{2} = 1+1 = 2##, which does not match with the result obtained from using linear polarization: ##|M|^{2} = 1+cos^{2}\theta##
I'm not really sure where the calculation is going wrong, this should match with the linear polarization result.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top