Calculation of permissible error in physical quantity

  • #1

Homework Statement



I have doubt in calculating the permissible error. It goes as follows

Measure of two quantities along with the precision of respective measuring instrument is

A = 25.0 ± 0.5 m/s, B = 0.10 ± 0.01 s. A physical quantity C is calculated as C = A × B. What will be the value of C along with permissible error

Homework Equations



[itex]\frac { ΔC } {C} = \Big ( {\frac { ΔA } {A} + \frac {Δ B} {B} } \Big )

[/itex]



The Attempt at a Solution



STEP 1.

In the literature it is clearly mention that number of significant figures in result C is governed by the following rule.

"In multiplication or division, the final result should retain as many significant figures as are there in the original number with smallest number of significant figures."

Going by this rule C= 25.0 x 0.10 = 2.50 m = 2.5 m (rounding off to two significant figures).



STEP 2.

[itex]\frac { ΔC } {C} = \Big ( {\frac { ΔA } {A} + \frac {Δ B} {B} } \Big ) = \Big ( {\frac { 0.5 } {25.0} + \frac {Δ0.01} {0.10} } \Big ) =

0.02 + 0.1 = 0.12

[/itex]

ΔC = 0.12 × 2.5 =0.30 m

However, to what the significant figures after rounding off should the permissible error ΔC be reported. Should ΔC=0.30m or 0.3m or something else What is the rule governing this?
 

Answers and Replies

  • #2
However, to what the significant figures after rounding off should the permissible error ΔC be reported. Should ΔC=0.30m or 0.3m or something else What is the rule governing this?
Don't give more than two digits on the uncertainty, and those only if you believe the second digit could make sense. Your dominant uncertainty is not given better than 1 significant figure (and that digit is a 1), so 0.3 m is appropriate.
 
  • Like
Likes Abhishek Gupta
  • #3
Thanks a lot for a prompt reply!
So the governing rule is that uncertainty in the measurement should be reported to one significant figure .
 
  • #4
Depends on the situation.

If your values would have been given as A = 25.00 ± 0.50 m/s, B = 0.100 ± 0.010 s or even B = 1.100 ± 0.080 s, I would give two significant figures for the uncertainties on the product.
 
  • #5
Depends on the situation.

If your values would have been given as A = 25.00 ± 0.50 m/s, B = 0.100 ± 0.010 s or even B = 1.100 ± 0.080 s, I would give two significant figures for the uncertainties on the product.
So you mean to say that it depends upon the significant figures present in the error involved in measuring the dependent physical quantities.
 
  • #6
Sure.
 

Suggested for: Calculation of permissible error in physical quantity

Replies
7
Views
740
Replies
6
Views
855
Replies
1
Views
446
Replies
6
Views
773
Replies
4
Views
546
Replies
6
Views
426
Replies
4
Views
355
Back
Top