Calculation of the Berry connection for a 2x2 Hamiltonian

Click For Summary
The discussion focuses on calculating the Berry connection for a 2x2 Hamiltonian represented as H = aσ_x + cσ_z, where the parameters are expressed in polar coordinates. The eigenvalues are identified as E_± = ±r, and the eigenvector associated with the negative eigenvalue is questioned for its correctness. A participant points out that the eigenvector expression appears incorrect, emphasizing that the Hamiltonian can be factored to show that r should not influence the eigenvectors. The confusion arises from the absence of a phase factor in the eigenstates, which is crucial for obtaining a real Berry connection.
Silicon-Based
Messages
51
Reaction score
1
Homework Statement
Calculate the Berry connection
Relevant Equations
$$
A_R = i\langle \psi | \nabla_R| \psi \rangle
$$
This isn't technically a homework problem, but I'm trying to check my understanding of the geometric phase by explicitly calculating the Berry connection for a simple 2x2 Hamiltonian that is not a textbook example of a spin-1/2 particle in a three dimensional magnetic field solved via a Bloch sphere representation and my results don't make sense. Suppose I have the Hamiltonian
$$
H = a\sigma_x+c\sigma_z =
\begin{pmatrix}
c & a\\
a & -c
\end{pmatrix}
$$ To simplify the calculations slightly I switch to polar coordinates using $$a=r\cos(\theta)$$ and $$c=r\sin(\theta).$$ The eigenvalues of the Hamiltonian are
$$
E_{\pm}=\pm r
$$ and the eigenvector associated with the negative eigenvalue becomes
$$
|-\rangle = (r^2-2r\sin(\theta)+1)^{-1/2} (\sin(\theta)-r,\cos(\theta))^T
$$ It is evident from the expression for the above eigenvector that the Berry connection for this eigenstate, which for the $r$-component is defined as
$$
A_r = i\langle - | \frac{\partial}{\partial r} |- \rangle,
$$ will be purely imaginary. This is obviously wrong as the Berry phase, which is the integral over the Berry connection, must be real, but I'm confused as to why my calculations are incorrect. In the textbook examples of a spin-1/2 particle, there is a convenient phase factor of $e^{i\phi}$ present in the eigenstates, which results in a real value for the $\phi$-component of the Berry connection upon differentiation, unlike in the example above.
 
Physics news on Phys.org
Silicon-Based said:
Suppose I have the Hamiltonian
$$
H = a\sigma_x+c\sigma_z =
\begin{pmatrix}
c & a\\
a & -c
\end{pmatrix}
$$ To simplify the calculations slightly I switch to polar coordinates using $$a=r\cos(\theta)$$ and $$c=r\sin(\theta).$$ The eigenvalues of the Hamiltonian are
$$
E_{\pm}=\pm r
$$ and the eigenvector associated with the negative eigenvalue becomes
$$
|-\rangle = (r^2-2r\sin(\theta)+1)^{-1/2} (\sin(\theta)-r,\cos(\theta))^T
$$
Your expression for ##|-\rangle## doesn't look correct to me. Note that the Hamiltonian can be written as
$$
H = r
\begin{pmatrix}
\sin(\theta) & \cos(\theta)\\
\cos(\theta) & -\sin(\theta)
\end{pmatrix}$$
##r## appears as an overall multiplicative factor. So, the eigenvectors should not depend on ##r##.
 
At first, I derived that: $$\nabla \frac 1{\mu}=-\frac 1{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R$$ (dot means differentiation with respect to ##t'##). I assume this result is true because it gives valid result for magnetic field. To find electric field one should also derive partial derivative of ##\vec A## with respect to ##t##. I've used chain rule, substituted ##\vec A## and used derivative of product formula. $$\frac {\partial \vec A}{\partial t}=\frac...