Calculation of torque and force on magnetic dipole near infinite wire

  • Thread starter Thread starter zenterix
  • Start date Start date
  • Tags Tags
    Magnetic dipole
Click For Summary

Homework Help Overview

The discussion revolves around the calculation of torque and force on a magnetic dipole located near an infinite wire. The original poster presents equations related to the magnetic field generated by the wire and the resulting torque and force on the dipole, expressing confusion about the interpretation of these equations in relation to the coordinate system defined.

Discussion Character

  • Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • The original poster attempts to apply the formula for force derived from potential energy but questions the interpretation of the magnetic field's dependence on different coordinates. Some participants suggest the need for a negative sign in the force equation and clarify the relationship between the magnetic field and the coordinates involved.

Discussion Status

Participants are actively engaging with the original poster's reasoning, offering clarifications and corrections regarding the equations used. There is an exploration of the implications of the dipole's geometry and its approximation as a point dipole, indicating a productive direction in the discussion.

Contextual Notes

There is mention of the semi-circular loop's position in the coordinate system and the assumption that its distance from the wire is significantly larger than its radius, which may affect the interpretation of the forces involved.

zenterix
Messages
774
Reaction score
84
Homework Statement
Consider the figure below, which shows an infinite wire carrying a current ##I_1## and a semicircular conducting loop with current ##I_2## placed near the wire.
Relevant Equations
What happens to to the semicircular loop?
1709968982554.png

Please see the image further below for the definition of the coordinate system.

The magnetic dipole moment of the loop is

$$\vec{\mu}=\mu\hat{k}\tag{1}$$

The magnetic field for an infinite wire depends only on the distance from the wire.

For the specific configuration above, we have

$$\vec{B}(y)=B(y)\hat{k}=\frac{\mu_0I}{2\pi y}\hat{k}\tag{2}$$

Note that I calculated this field considering an infinite wire and a point ##P## above it. That was a 2d problem (more on why I am saying this further below in my question).

Then

$$\vec{\tau}=\vec{\mu}\times \vec{B}=0$$

That is, there is no torque on the loop.

$$\vec{F}=\nabla(\vec{\mu}\cdot \vec{B})$$

$$=\nabla(\mu B(y))$$

$$=\mu\frac{\partial B}{\partial y}\hat{j}$$

Since the partial derivative above is negative, the loop translates towards the wire.

The problem I just solved online entailed reaching the two conclusions above, namely that the loop experiences no torque and translates towards the wire.

However, I am a little bit confused about some things.

I simply applied the formula I just learned: ##\vec{F}=\nabla(\vec{\mu}\cdot \vec{B})##, which comes from the force being the negative of the gradient of potential energy (the latter being ##-\vec{\mu}\cdot \vec{B}##).

However,

1709969404070.png


The way I solved the problem, I considered ##\vec{B}## to be a function of ##y## which is position in the ##\hat{j}## direction.

But doesn't ##\vec{B}## have a non-zero derivative relative to ##z## as well, ie in the ##\hat{k}## direction?

After all, ##y## is a function of ##z##.

There is something wrong with my interpretation of the equation ##\vec{F}=\nabla(\vec{\mu}\cdot \vec{B})## I believe.
 
Physics news on Phys.org
Your equation for the force in terms of the gradient of the potential energy requires a negative sign up front. Otherwise it is correct.

If the semi circular loop is in the ##xy## plane, the magnetic field in that plane has only a ##z##-component and ##y## does not depend on ##z.##

You realize that to find the force you need to do an integral. Look up the vector calculus identity for the gradient of the dot product.
 
kuruman said:
Your equation for the force in terms of the gradient of the potential energy requires a negative sign up front. Otherwise it is correct.

If the semi circular loop is in the ##xy## plane, the magnetic field in that plane has only a ##z##-component and ##y## does not depend on ##z.##

You realize that to find the force you need to do an integral. Look up the vector calculus identity for the gradient of the dot product.
But potential energy already has a minus sign (##-\mu\cdot\vec{B}##). Thus, ##\vec{F}=-\nabla(-\mu\cdot\vec{B})## so the negative signs cancel, no?

With regard to integration for finding the force, you can also find a force by differentiation of the appropriate function, right? Namely, the potential energy function. No integration involved in this case.
 
zenterix said:
But potential energy already has a minus sign (##-\mu\cdot\vec{B}##). Thus, ##\vec{F}=-\nabla(-\mu\cdot\vec{B})## so the negative signs cancel, no?
Yes. I was thinking about something else.
zenterix said:
With regard to integration for finding the force, you can also find a force by differentiation of the appropriate function, right? Namely, the potential energy function. No integration involved in this case.
That will work in the approximation that the semi circular loop is a point dipole, i.e. its distance from the wire is much larger than the radius of the semicircle. In that approximation it doesn't matter whether the loop is a semi circle, a circle or a rectangle or an irregular closed loop.
 

Similar threads

  • · Replies 25 ·
Replies
25
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
1K
Replies
12
Views
2K
Replies
2
Views
1K
Replies
19
Views
4K
  • · Replies 10 ·
Replies
10
Views
1K
Replies
1
Views
3K
Replies
2
Views
2K