ardentmed said:
Finally, for 8abc repectively, I got divergent (to -infinity), convergent (to π/6), and divergent (to infinity, since the first part's sum is 1/3, but lim negative infinity gives infinity, thus the summation of the two integrals gives a divergent integral). I'm sure these are right, but I'd appreciate some help, especially for 8c.I really appreciate the help guys. Thanks in advance.
I agree that the first one needs to be divergent, as the integral of a 1/x type function is a logarithm, which grows without bound (but at the slowest possible rate).
For the second:
$\displaystyle \begin{align*} \int{ \frac{\mathrm{e}^x\,\mathrm{d}x}{\mathrm{e}^{2x} + 3}} &= \int{\frac{\mathrm{e}^x\,\mathrm{d}x}{ \left( \mathrm{e}^x \right) ^2 + 3 } } \end{align*}$
Now substitute $\displaystyle \begin{align*} \mathrm{e}^x = \sqrt{3}\tan{ \left( \theta \right) } \implies \mathrm{e}^x\,\mathrm{d}x = \sqrt{3}\sec^2{ \left( \theta \right) } \,\mathrm{d}\theta \end{align*}$ and the integral becomes
$\displaystyle \begin{align*} \int{ \frac{\mathrm{e}^x\,\mathrm{d}x}{ \left( \mathrm{e}^x \right) ^2 + 3 }} &= \int{ \frac{\sqrt{3}\sec^2{ \left( \theta \right) } \,\mathrm{d}\theta}{ \left[ \sqrt{3}\tan{\left( \theta \right) } \right] ^2 + 3 }} \\ &= \frac{\sqrt{3}}{3} \int{ \frac{\sec^2{ \left( \theta \right) } \,\mathrm{d}\theta}{ \tan^2{\left( \theta \right) } + 1 }} \\ &= \frac{\sqrt{3}}{3} \int{ \frac{\sec^2{\left( \theta \right) } \,\mathrm{d}\theta}{\sec^2{\left( \theta \right) } }} \\ &= \frac{\sqrt{3}}{3} \int{ 1 \, \mathrm{d}\theta} \\ &= \frac{\sqrt{3}}{3} \theta + C \\ &= \frac{\sqrt{3}}{3} \arctan{ \left( \frac{\mathrm{e}^x}{\sqrt{3}} \right) } + C \end{align*}$
so your definite integral is
$\displaystyle \begin{align*} \int_0^{\infty}{\frac{\mathrm{e}^x\,\mathrm{d}x}{\mathrm{e}^{2x} + 3}} &= \lim_{\epsilon \to \infty} \int_0^{\epsilon}{ \frac{\mathrm{e}^x\,\mathrm{d}x}{\mathrm{e}^{2x} +3} } \\ &= \frac{\sqrt{3}}{3} \lim_{\epsilon \to \infty} \left[ \arctan{ \left( \frac{\mathrm{e}^x}{\sqrt{3}} \right) } \right]_0^{\epsilon} \\ &= \frac{\sqrt{3}}{3} \lim_{\epsilon \to \infty} \left[ \arctan{ \left( \frac{\mathrm{e}^{\epsilon}}{\sqrt{3}} \right) } - \arctan{ \left( \frac{\mathrm{e}^0}{\sqrt{3}} \right) } \right] \\ &= \frac{\sqrt{3}}{3} \left( \frac{\pi}{2} - \frac{\pi}{6} \right) \\ &= \frac{\sqrt{3}}{3} \left( \frac{\pi}{3} \right) \\ &= \frac{\sqrt{3}\,\pi}{9} \end{align*}$
so this integral is convergent :)