Calculus: Integral along a curve.

LCSphysicist
Messages
644
Reaction score
162
Homework Statement
.
Relevant Equations
.
Let $F = (P(x,y),Q(x,y))$ a field of vector class 1 in the ring $A={(x,y): 4<x²+y²<9}$ and $x,y$ reals.

I am having trouble to understand why this alternative is wrong:

If $ \partial P /\partial y = \partial Q /\partial x$ for every x,y inside A, so $\int_{C} Pdx + Qdy = 0$ for every circumference $\epsilon $ A.

I mean, the condition implies that $Curl F = 0$, and we have that the field of vector is C1, so we don't need to worry with anomalies or problems that could appear as $(...)/0$. In fact, $\int_{C} Pdx + Qdy = \int_{S} \nabla \times F \space ds = \int_{S} 0 \space ds = 0$

Where is my error? If i am wrong, could you give me an example of a vector field that does not satisfies the implication? Where is the error in my demonstration?
 
Physics news on Phys.org
The annulus ##A## is not simply connected, therefore ##\mathbf{F}(x,y) = (P(x,y), Q(x,y))^T## is not a conservative vector field even if ##\dfrac{\partial P}{\partial y} = \dfrac{\partial Q}{\partial x}##. For example, consider the line integral of a vector field ##\mathbf{F}(x,y) = \dfrac{1}{x^2+y^2} (-y,x)^T## around a closed curve ##C: \mathbf{r}(t) = a(\cos{t}, \sin{t})^T## for ##t \in [0, 2\pi]## and with ##a \in (2,3)##.
 
  • Like
Likes LCSphysicist
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top