Can a Function be Both Even and Odd at the Same Time?

  • Thread starter Thread starter {~}
  • Start date Start date
  • Tags Tags
    even Functions
Click For Summary
A function cannot be both even and odd simultaneously unless it is the zero function. In the case where both functions are even, their sum is also even. When both functions are odd, their sum remains odd unless a specific condition is met, such as one function being a constant. For the case of one even and one odd function, the sum does not conform to being even or odd in general. Understanding the definitions of even and odd functions in terms of sets can clarify these relationships further.
{~}
Messages
63
Reaction score
0
I have been looking at my old calculus textbook because to my dismay I seem to have forgotten most of the calculus I learned. I am given 3 cases of ##(f+g)(x) ##.

Case 1 both f and g are even:
I know ##f(x) = f(-x) ## and ##g(x)=g(-x) ## for the domain of the function. I can reason by substitution that
##f(x)+g(x)=f(-x)+g(-x) ##
##(f+g)(x)=(f+g)(-x) ##
##(f+g)(x) ## is even. So far so good.

Case 2 both f and g are odd:
I found that if ##f(x)=-g(x)+c ## then
##(f+g)(x)=c ## which is even.
Otherwise I think that ##(f+g)(x) ## would be odd though I don't know how to assert that.

Case 3 f is even and g is odd:
I think that other than is special case where one or both of our functions are zero for all x in the domain ##(f+g)(x) ## would neither be even or odd. I don't know how to prove this.

I know that the notions of even an odd is defined in terms of sets rather than algebraically like I did here. I think if I understood sets better I might have more of a handle on this, I don't know. Hints?
 
Physics news on Phys.org
If ##f## and ##g## are odd:

##(f+g)(-x)=f(-x)+g(-x)=-f(x)-g(x)=-(f+g)(x)##.
 
DarthMatter said:
If ##f## and ##g## are odd:

##(f+g)(-x)=f(-x)+g(-x)=-f(x)-g(x)=-(f+g)(x)##.
I had something similar, but why does this look like it's always true when it isn't? Or is my special case wrong?
 
What special case? ##-g(x)+c## is not odd in general.
 
DarthMatter said:
What special case? ##-g(x)+c## is not odd in general.
Thanks for pointing out my error. That made things less confusing.
 
{~} said:
Case 3 f is even and g is odd:
I think that other than is special case where one or both of our functions are zero for all x in the domain ##(f+g)(x) ## would neither be even or odd. I don't know how to prove this.
Suppose that ##f## is even and ##g## is odd.

If ##f+g## is even then ##f(x) + g(x) = f(-x) + g(-x)## for all ##x##. Since ##f(x) = f(-x)##, it follows that ##g(x) = g(-x)##. But ##g## is odd, so also ##g(x) = -g(-x)##. Therefore, ##g(-x) = -g(-x)##, or equivalently ##2g(-x) = 0##. This is true for all ##x##, so ##g## is the zero function.

If ##f+g## is odd then ##f(x) + g(x) = -f(-x) - g(-x)## for all ##x##. Since ##g(x) = -g(-x)##, this is equivalent to ##f(x) = -f(-x)##. But ##f## is even, so also ##f(x) = f(-x)##. Therefore, ##f(-x) = -f(-x)##, or ##2f(-x) = 0##. This is true for all ##x##, so ##f## is the zero function.
 
Last edited:
{~} said:
Case 3 f is even and g is odd:
I think that other than is special case where one or both of our functions are zero for all x in the domain (f+g)(x) would neither be even or odd. I don't know how to prove this.
In Case 3 you can not say anything about the sum of an even + odd function. Any function, h(x), can be represented as the sum of an even function and an odd function. So you can not state any conclusions about h.
( Define even(x) = (h(x) + h(-x))/2 and odd(x) = (h(x) - h(-x))/2. Prove that h(x) = even(x) + odd(x), that even(x) is even, and that odd(x) is odd.)
 
Last edited:

Similar threads