I Can a Gaussian distribution be represented as a sum of Dirac Deltas?

tworitdash
Messages
104
Reaction score
25
We know that Dirac Delta is not a function. However, I just talk about the numerical version of it that we use every day. We can simply represent the Dirac delta function as a limiting case of Gaussian distribution when the width of the distribution ##\sigma->0##.

$$
\delta(x - \mu) = lim_{\sigma -> 0} \frac{1}{\sqrt{2\pi \sigma^2}} e^{\frac{-(x - \mu)^2}{2\sigma^2}}
$$

Is it possible to also say the reverse with a weighted sum of Dirac Deltas to construct a Gaussian spectrum?

$$
\frac{1}{\sqrt{2\pi \sigma^2}} e^{\frac{-(x - mu)^2}{2\sigma^2}} = \sum_{i} w_i \delta(x - i)
$$

Where, somehow the weights ##w_i## constitute how it is distributed (##\sigma##). If yes, how do we decide these weights?
 
Mathematics news on Phys.org
Any function can be represented as a sum of Dirac delta functions:

Let ##f(x)## be an arbitrary function of ##x##. Then you can represent it as:

##\int f(y) \delta(x-y) dy##

So that's a weighted sum (well, integral) of delta functions.
 
stevendaryl said:
Any function can be represented as a sum of Dirac delta functions:

Let ##f(x)## be an arbitrary function of ##x##. Then you can represent it as:

##\int f(y) \delta(x-y) dy##

So that's a weighted sum (well, integral) of delta functions.

If you really want a discrete sum, instead of an integral, then it can't be done for most functions. But I guess for some purposes, you can approximate a function by delta functions: Pick a small positive x increment ##\Delta x## and define ##\tilde{f}(x, \Delta x)## by:

##\tilde{f}(x, \Delta x) = \sum_j f(j \Delta x) \delta(x- j\Delta x) \Delta x##

where ##\Delta x## is some small real number. This approximation works in an integration sense: For any other smooth function ##g(x)##, we have:

##lim_{\Delta x \Rightarrow 0} \int \tilde{f}(x, \Delta x) g(x) dx = \int f(x) g(x) dx##
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top