I Can a Gaussian distribution be represented as a sum of Dirac Deltas?

Click For Summary
A Dirac Delta function can be approximated as a limiting case of a Gaussian distribution as the width approaches zero. Conversely, it is proposed that a Gaussian spectrum can be represented as a weighted sum of Dirac Deltas, where the weights determine the distribution. While any function can be expressed as an integral of Dirac delta functions, a discrete sum representation is not feasible for most functions. However, an approximation using small increments can be made, allowing for a representation that works in an integration sense. This discussion highlights the relationship between Gaussian distributions and Dirac delta functions in mathematical modeling.
tworitdash
Messages
104
Reaction score
25
We know that Dirac Delta is not a function. However, I just talk about the numerical version of it that we use every day. We can simply represent the Dirac delta function as a limiting case of Gaussian distribution when the width of the distribution ##\sigma->0##.

$$
\delta(x - \mu) = lim_{\sigma -> 0} \frac{1}{\sqrt{2\pi \sigma^2}} e^{\frac{-(x - \mu)^2}{2\sigma^2}}
$$

Is it possible to also say the reverse with a weighted sum of Dirac Deltas to construct a Gaussian spectrum?

$$
\frac{1}{\sqrt{2\pi \sigma^2}} e^{\frac{-(x - mu)^2}{2\sigma^2}} = \sum_{i} w_i \delta(x - i)
$$

Where, somehow the weights ##w_i## constitute how it is distributed (##\sigma##). If yes, how do we decide these weights?
 
Mathematics news on Phys.org
Any function can be represented as a sum of Dirac delta functions:

Let ##f(x)## be an arbitrary function of ##x##. Then you can represent it as:

##\int f(y) \delta(x-y) dy##

So that's a weighted sum (well, integral) of delta functions.
 
stevendaryl said:
Any function can be represented as a sum of Dirac delta functions:

Let ##f(x)## be an arbitrary function of ##x##. Then you can represent it as:

##\int f(y) \delta(x-y) dy##

So that's a weighted sum (well, integral) of delta functions.

If you really want a discrete sum, instead of an integral, then it can't be done for most functions. But I guess for some purposes, you can approximate a function by delta functions: Pick a small positive x increment ##\Delta x## and define ##\tilde{f}(x, \Delta x)## by:

##\tilde{f}(x, \Delta x) = \sum_j f(j \Delta x) \delta(x- j\Delta x) \Delta x##

where ##\Delta x## is some small real number. This approximation works in an integration sense: For any other smooth function ##g(x)##, we have:

##lim_{\Delta x \Rightarrow 0} \int \tilde{f}(x, \Delta x) g(x) dx = \int f(x) g(x) dx##
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads