aditya ver.2.0
- 67
- 4
Will a static electron be influenced by a magnetic field.
May we say, therefore, that the electrons in a receiving antenna move only in response to the E-field of a passing wave?vanhees71 said:Well, if there's only a magnetic field in the restframe of the electron, there'll be no force on the electron (see the previous posting). But if the magnetic field is time-dependent there's also an electric field due to Faraday's Law,
$$\frac{1}{c} \partial_t \vec{B}+\vec{\nabla} \times \vec{E}=0.$$
Then, of course the force on the electron is the full Lorentz force,
$$\vec{F}=q \left (\vec{E}+\frac{\vec{v}}{c} \times \vec{B} \right ).$$
So then it will be affected. You have to always look at both the electric and the magnetic field. In fact, electric and magnetic fields are just a split of the one and only electromagnetic field into components with respect to an arbitrary inertial reference frame.NB: I always use Heaviside-Lorentz units, because they are the most natural ones for electromagnetism.
vanhees71 said:Well, if there's only a magnetic field in the restframe of the electron, there'll be no force on the electron (see the previous posting). But if the magnetic field is time-dependent there's also an electric field due to Faraday's Law,
$$\frac{1}{c} \partial_t \vec{B}+\vec{\nabla} \times \vec{E}=0.$$
What did you do with the charge? Doesn't it produce a field?