Ok, now we are getting somewhere. Yes, theories are a conceptual model, just like the statistical models for inheritance.
Going further with biology, the discovery of the function of DNA in terms of genes "solved" the problem of inheritance.
I'm not an expert, but in many ways, GR 'solved' the problem of gravity. There's a lot of people here who can help you understand GR better. It provides a fairly simple conceptual model that predicts and explains measured data.
Just as 'it wasn't until [Newtonian mechanics was developed] that the how questions started getting answered', when GR was developed, *additional* how questions started getting answered. GR also makes some very simple predictions that are extremely difficult to test (and GR is still being tested).
Back to biology- the discovery of DNA explained a lot, but there is still a lot unknown about genes. It's an incomplete model- so in addition to the genome, we have the proteome, metabolome, fillintheblank-ome, because the more accurately we want to model things like the development of an organism, the more factors we have to take into account. We have a quantitative idea of a gene, but not what each one does (the proteome project). Also, we do not understand related things like upstream regulators for expression, post-translational modification and the spliceosome (one gene != 1 protein), modifier genes, etc.
So to be fair, there's still a lot of research regarding genetics.
Does this help?