Can anyone please review/verify my proofs for gcd problem?

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Gcd Proofs
Click For Summary

Homework Help Overview

The discussion revolves around proving properties of the greatest common divisor (gcd) under the assumption that gcd(a, b) = 1. The specific problems include determining the gcd of various combinations of a and b, such as gcd(a+b, a-b), gcd(2a+b, a+2b), gcd(a+b, a²+b²), and gcd(a+b, a²-ab+b²).

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants present proofs for each part, demonstrating reasoning about divisibility and properties of gcd. Some suggest clarifications regarding the implications of certain steps, particularly in how divisibility is established and the conditions under which conclusions about gcd can be drawn.

Discussion Status

The discussion includes multiple proofs and revisions, with participants providing feedback on each other's reasoning. Some have pointed out potential gaps in logic or clarity, particularly regarding the implications of divisibility and the need for precise statements about gcd. There is an ongoing effort to refine the proofs and ensure correctness.

Contextual Notes

Participants are working under the assumption that gcd(a, b) = 1, which serves as a foundational constraint for the proofs. There are hints provided in the original statements that guide the reasoning process, but participants are encouraged to explore the implications of these hints critically.

Math100
Messages
823
Reaction score
234
Homework Statement
Assuming that gcd(a, b)=1, prove the following:
(a) gcd(a+b, a-b)=1 or 2.
[Hint: Let d=gcd(a+b, a-b) and show that d##\mid## 2a, d##\mid##2b, and thus that d##\leq##gcd(2a, 2b)=2 gcd(a, b).]
(b) gcd(2a+b, a+2b)=1 or 3.
(c) gcd(a+b, a^{2}+b^{2})=1 or 2.
[Hint: a^{2}+b^{2}=(a+b)(a-b)+2b^{2}.]
(d) gcd(a+b, a^{2}-ab+b^{2})=1 or 3.
[Hint: a^{2}-ab+b^{2}=(a+b)^{2}-3ab.]
Relevant Equations
None.
Proof: (a) Suppose that gcd(a, b)=1.
Let d=gcd(a+b, a-b).
By definition of the greatest common divisor,
we have that d##\mid##(a+b) and d##\mid##(a-b).
This means d##\mid##[(a+b)+(a-b)] and d##\mid##[(a+b)-(a-b)],
so we have d##\mid##2a and d##\mid##2b.
Note that d##\leq##gcd(2a, 2b)=2 gcd(a, b).
Since gcd(a, b)=1, it follows that 2 gcd(a, b)=2(1)=2.
Thus, d##\mid##2, which implies that d=1 or d=2.
Therefore, gcd(a+b, a-b)=1 or 2.
(b) Suppose that gcd(a, b)=1.
Let d=gcd(2a+b, a+2b).
By definition of the greatest common divisor,
we have that d##\mid##(2a+b) and d##\mid##(a+2b).
This means d##\mid##[2(2a+b)-(a+2b)] and d##\mid##[-(2a+b)+2(a+2b)],
so we have d##\mid##3a and d##\mid##3b.
Note that d##\leq##gcd(3a, 3b)=3 gcd(a, b).
Since gcd(a, b)=1, it follows that 3 gcd(a, b)=3(1)=3.
Thus, d##\mid##3, which implies that d=1 or d=3.
Therefore, gcd(2a+b, a+2b)=1 or 3.
(c) Suppose that gcd(a, b)=1.
Let d=gcd(a+b, a^{2}+b^{2}).
By definition of the greatest common divisor,
we have that d##\mid##(a+b) and d##\mid##(a^{2}+b^{2}).
This means d##\mid##[(a^{2}+b^{2})+(a^{2}-b^{2})] and d##\mid##[(a^{2}+b^{2})-(a^{2}-b^{2})],
so we have d##\mid##2a^{2} and d##\mid##2b^{2}.
Note that d##\leq##gcd(2a^{2}, 2b^{2})=2 gcd(a^{2}, b^{2}).
Since gcd(a, b)=1, it follows that gcd(a^{2}, b^{2})=1.
Thus, 2 gcd(a^{2}, b^{2})=2(1)=2, and so d##\mid##2,
which implies that d=1 or d=2.
Therefore, gcd(a+b, a^{2}+b^{2})=1 or 2.
(d) Suppose that gcd(a, b)=1.
Let d=gcd(a+b, a^{2}-ab+b^{2}).
By definition of the greatest common divisor,
we have that d##\mid##(a+b) and d##\mid##(a^{2}-ab+b^{2}).
This means d##\mid##[(a+b)^{2}-(a^{2}-ab+b^{2})], so we have d##\mid##3ab.
Note that each prime divisor k of d must divide either 3, a or b.
Thus, we have that d##\mid##[3a(a+b)-3ab] and d##\mid##[3b(a+b)-3ab],
so d##\mid##3a^{2} and d##\mid##3b^{2}.
Then we get d##\leq##gcd(3a^{2}, 3b^{2})=3 gcd(a^{2}, b^{2}).
Since gcd(a, b)=1, it follows that gcd(a^{2}, b^{2})=1.
Thus, 3 gcd(a^{2}, b^{2})=3(1)=3, and so d##\mid##3,
which implies that d=1 or d=3.
Therefore, gcd(a+b, a^{2}-ab+b^{2})=1 or 3.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Assuming that gcd(a, b)=1, prove the following:
(a) gcd(a+b, a-b)=1 or 2.
[Hint: Let d=gcd(a+b, a-b) and show that d##\mid## 2a, d##\mid##2b, and thus that d##\leq##gcd(2a, 2b)=2 gcd(a, b).]
(b) gcd(2a+b, a+2b)=1 or 3.
(c) gcd(a+b, a^{2}+b^{2})=1 or 2.
[Hint: a^{2}+b^{2}=(a+b)(a-b)+2b^{2}.]
(d) gcd(a+b, a^{2}-ab+b^{2})=1 or 3.
[Hint: a^{2}-ab+b^{2}=(a+b)^{2}-3ab.]
Relevant Equations:: None.

Note that d≤gcd(3a, 3b)=3 gcd(a, b).
Since gcd(a, b)=1, it follows that 3 gcd(a, b)=3(1)=3.
Thus, d∣3, which implies that d=1 or d=3.
b) From the first and second line, we can conclude ##d \le 3##. But that doesn't imply ##d## divides ##3##. But this can be fixed by changing the first line to "Note that ##d## divides ##\gcd(3a,3b) = 3\gcd(a, b)##". You may want to make a similar change in a, c, d) even though it kind of works out in a) and c) case.

Math100 said:
Homework Statement:: Assuming that gcd(a, b)=1, prove the following:
(a) gcd(a+b, a-b)=1 or 2.
[Hint: Let d=gcd(a+b, a-b) and show that d##\mid## 2a, d##\mid##2b, and thus that d##\leq##gcd(2a, 2b)=2 gcd(a, b).]
(b) gcd(2a+b, a+2b)=1 or 3.
(c) gcd(a+b, a^{2}+b^{2})=1 or 2.
[Hint: a^{2}+b^{2}=(a+b)(a-b)+2b^{2}.]
(d) gcd(a+b, a^{2}-ab+b^{2})=1 or 3.
[Hint: a^{2}-ab+b^{2}=(a+b)^{2}-3ab.]
Relevant Equations:: None.

By definition of the greatest common divisor,
we have that d∣(a+b) and d∣(a^{2}+b^{2}).
This means d∣[(a^{2}+b^{2})+(a^{2}-b^{2})] and d∣[(a^{2}+b^{2})-(a^{2}-b^{2})]
c) Maybe I'm just being slow, but i think it would be helpful to include a line "Since ##d \vert (a+b)##, we have ##d \vert (a+b)(a-b) = a^2 - b^2##. Other than that, i think everything else is correct.
Math100 said:
Homework Statement:: Assuming that gcd(a, b)=1, prove the following:
(a) gcd(a+b, a-b)=1 or 2.
[Hint: Let d=gcd(a+b, a-b) and show that d##\mid## 2a, d##\mid##2b, and thus that d##\leq##gcd(2a, 2b)=2 gcd(a, b).]
(b) gcd(2a+b, a+2b)=1 or 3.
(c) gcd(a+b, a^{2}+b^{2})=1 or 2.
[Hint: a^{2}+b^{2}=(a+b)(a-b)+2b^{2}.]
(d) gcd(a+b, a^{2}-ab+b^{2})=1 or 3.
[Hint: a^{2}-ab+b^{2}=(a+b)^{2}-3ab.]
Relevant Equations:: None.

Note that each prime divisor k of d must divide either 3, a or b.
Thus, we have that d∣[3a(a+b)-3ab] and d∣[3b(a+b)-3ab]
d) I don't think the first line implies the second, i.e., if a prime ##p## divides ##b## but not ##a## or ##3##, then we have ##p## doesn't divide ##3a(a+b) - 3ab##. However, the second line is true since ##d \vert (a+b)## and ##d \vert 3ab##. Other than that, and changing ##d \le 3## to ##d \vert 3##, it looks good to me.
 
  • Like
Likes   Reactions: Math100
I revised this problem, can you please review/verify to see if it's correct this time?

Proof:
(a) Suppose that gcd(a, b)=1.
Let d=gcd(a+b, a-b).
By definition of the greatest common divisor,
we have that d##\mid##(a+b) and d##\mid##(a-b).
This means d##\mid##[(a+b)+(a-b)] and d##\mid##[(a+b)-(a-b)],
so we have d##\mid##2a and d##\mid##2b.
Note that d divides gcd(2a, 2b)=2 gcd(a, b).
Since gcd(a, b)=1, it follows that 2 gcd(a, b)=2(1)=2.
Thus, d##\mid##2, which implies that d=1 or d=2.
Therefore, gcd(a+b, a-b)=1 or 2.
(b) Suppose that gcd(a, b)=1.
Let d=gcd(2a+b, a+2b).
By definition of the greatest common divisor,
we have that d##\mid##(2a+b) and d##\mid##(a+2b).
This means d##\mid##[2(2a+b)-(a+2b)] and d##\mid##[-(2a+b)+2(a+2b)],
so we have d##\mid##3a and d##\mid##3b.
Note that d divides gcd(3a, 3b)=3 gcd(a, b).
Since gcd(a, b)=1, it follows that 3 gcd(a, b)=3(1)=3.
Thus, d##\mid##3, which implies that d=1 or d=3.
Therefore, gcd(2a+b, a+2b)=1 or 3.
(c) Suppose that gcd(a, b)=1.
Let d=gcd(a+b, a^{2}+b^{2}).
By definition of the greatest common divisor,
we have that d##\mid##(a+b) and d##\mid##(a^{2}+b^{2}).
Since d##\mid##(a+b), we have d##\mid##(a+b)(a-b)=a^{2}-b^{2}.
This means d##\mid##[(a^{2}+b^{2})+(a^{2}-b^{2})] and d##\mid##[(a^{2}+b^{2})-(a^{2}-b^{2})],
so we have d##\mid##2a^{2} and d##\mid##2b^{2}.
Note that d divides gcd(2a^{2}, 2b^{2})=2 gcd(a^{2}, b^{2}).
Since gcd(a, b)=1, it follows that gcd(a^{2}, b^{2})=1.
Thus, 2 gcd(a^{2}, b^{2})=2(1)=2, and so d##\mid##2,
which implies that d=1 or d=2.
Therefore, gcd(a+b, a^{2}+b^{2})=1 or 2.
(d) Suppose that gcd(a, b)=1.
Let d=gcd(a+b, a^{2}-ab+b^{2}).
By definition of the greatest common divisor,
we have that d##\mid##(a+b) and d##\mid##(a^{2}-ab+b^{2}).
This means d##\mid##[(a+b)^{2}-(a^{2}-ab+b^{2})],
so we have d##\mid##3ab.
Now we have that d##\mid##[3a(a+b)-3ab] and d##\mid##[3b(a+b)-3ab],
so d##\mid##3a^{2} and d##\mid##3b^{2}.
Note that d divides gcd(3a^{2}, 3b^{2})=3 gcd(a^{2}, b^{2}).
Since gcd(a, b)=1, it follows that gcd(a^{2}, b^{2})=1.
Thus, 3 gcd(a^{2}, b^{2})=3(1)=3, and so d##\mid##3,
which implies that d=1 or d=3.
Therefore, gcd(a+b, a^{2}-ab+b^{2})=1 or 3.

I am so sorry for the late response of this problem. I was too busy in my workplace for the past two days. Now this problem is revised. Please leave any comment or feedback. I want to know if it's good or not.
 
  • Like
Likes   Reactions: fishturtle1
Math100 said:
I revised this problem, can you please review/verify to see if it's correct this time?

Proof:
(a) Suppose that gcd(a, b)=1.
Let d=gcd(a+b, a-b).
By definition of the greatest common divisor,
we have that d##\mid##(a+b) and d##\mid##(a-b).
This means d##\mid##[(a+b)+(a-b)] and d##\mid##[(a+b)-(a-b)],
so we have d##\mid##2a and d##\mid##2b.
Note that d divides gcd(2a, 2b)=2 gcd(a, b).
Since gcd(a, b)=1, it follows that 2 gcd(a, b)=2(1)=2.
Thus, d##\mid##2, which implies that d=1 or d=2.
Therefore, gcd(a+b, a-b)=1 or 2.
(b) Suppose that gcd(a, b)=1.
Let d=gcd(2a+b, a+2b).
By definition of the greatest common divisor,
we have that d##\mid##(2a+b) and d##\mid##(a+2b).
This means d##\mid##[2(2a+b)-(a+2b)] and d##\mid##[-(2a+b)+2(a+2b)],
so we have d##\mid##3a and d##\mid##3b.
Note that d divides gcd(3a, 3b)=3 gcd(a, b).
Since gcd(a, b)=1, it follows that 3 gcd(a, b)=3(1)=3.
Thus, d##\mid##3, which implies that d=1 or d=3.
Therefore, gcd(2a+b, a+2b)=1 or 3.
(c) Suppose that gcd(a, b)=1.
Let d=gcd(a+b, a^{2}+b^{2}).
By definition of the greatest common divisor,
we have that d##\mid##(a+b) and d##\mid##(a^{2}+b^{2}).
Since d##\mid##(a+b), we have d##\mid##(a+b)(a-b)=a^{2}-b^{2}.
This means d##\mid##[(a^{2}+b^{2})+(a^{2}-b^{2})] and d##\mid##[(a^{2}+b^{2})-(a^{2}-b^{2})],
so we have d##\mid##2a^{2} and d##\mid##2b^{2}.
Note that d divides gcd(2a^{2}, 2b^{2})=2 gcd(a^{2}, b^{2}).
Since gcd(a, b)=1, it follows that gcd(a^{2}, b^{2})=1.
Thus, 2 gcd(a^{2}, b^{2})=2(1)=2, and so d##\mid##2,
which implies that d=1 or d=2.
Therefore, gcd(a+b, a^{2}+b^{2})=1 or 2.
(d) Suppose that gcd(a, b)=1.
Let d=gcd(a+b, a^{2}-ab+b^{2}).
By definition of the greatest common divisor,
we have that d##\mid##(a+b) and d##\mid##(a^{2}-ab+b^{2}).
This means d##\mid##[(a+b)^{2}-(a^{2}-ab+b^{2})],
so we have d##\mid##3ab.
Now we have that d##\mid##[3a(a+b)-3ab] and d##\mid##[3b(a+b)-3ab],
so d##\mid##3a^{2} and d##\mid##3b^{2}.
Note that d divides gcd(3a^{2}, 3b^{2})=3 gcd(a^{2}, b^{2}).
Since gcd(a, b)=1, it follows that gcd(a^{2}, b^{2})=1.
Thus, 3 gcd(a^{2}, b^{2})=3(1)=3, and so d##\mid##3,
which implies that d=1 or d=3.
Therefore, gcd(a+b, a^{2}-ab+b^{2})=1 or 3.

I am so sorry for the late response of this problem. I was too busy in my workplace for the past two days. Now this problem is revised. Please leave any comment or feedback. I want to know if it's good or not.
No need to apologize; the proofs look correct to me.
 
  • Like
Likes   Reactions: Math100
Thank you so much for the help!
 

Similar threads

Replies
2
Views
1K
Replies
5
Views
2K
Replies
5
Views
2K
Replies
7
Views
3K
Replies
12
Views
2K
Replies
20
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K