Can Derivative Methods Determine the Correct Angle in Physics Problems?

AI Thread Summary
Derivative methods can effectively determine the correct angle in physics problems, particularly when analyzing forces. It is essential to specify units clearly, such as using "1500sin(θ) Nm." Considering the force acting at the center of the arc simplifies calculations, as the horizontal component does not create a moment about point O. The initial statement about deriving and equating to zero for angles between 0 and 180° is correct. Overall, clarity in terminology and proper unit specification are crucial for accurate problem-solving.
Tapias5000
Messages
46
Reaction score
10
Homework Statement
Determine the moment of the force with respect to point O as a function of θ . for what value of θ in the range between 0° and 180° is the moment at its maximum? what is the value of the moment in this case?
Relevant Equations
Mo= R x F
This is the image of the problem:
Captura.PNG

I tried to solve it and I got the following is it correct?

1631573856591.png

derive and equal to 0 because it is between an angle of 0 and 180° is this statement correct?
 
Physics news on Phys.org
Looks fine, though you should specify units everywhere, e.g. ##1500\sin(\theta)Nm##.

You can take the point of action of a force as anywhere along its line of action, so it is simpler to consider the force acting at the centre of the arc. The horizontal component then has no moment about O, and you can write the answer down immediately.

Btw, you put "momentum" in the title instead of "moment".
 
haruspex said:
Looks fine, though you should specify units everywhere, e.g. ##1500\sin(\theta)Nm##.

You can take the point of action of a force as anywhere along its line of action, so it is simpler to consider the force acting at the centre of the arc. The horizontal component then has no moment about O, and you can write the answer down immediately.

Btw, you put "momentum" in the title instead of "moment".
ok, but I still need to find the angle, is the statement I said correct to find it?
 
Tapias5000 said:
ok, but I still need to find the angle, is the statement I said correct to find it?
Yes.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top