JesseM,
I tried to follow the papers and references to your previous posts you suggested, but I need more time to read them carefully.
I think that we should proceed more systematically and focus on the original papers first (one at the time) before discussing your previous posts which are reflections on the original publications. At this point I am reday (read finally) to discuss the “BERTLMANN'S SOCKS AND THE NATURE OF REALITY” by J. Bell.
(this link should work now).
http://hal.archives-ouvertes.fr/docs/00/22/06/88/PDF/ajp-jphyscol198142C202.pdf
Next I would discuss the “BELL’S THEOREM : THE NAIVE VIEW OF AN EXPERIMENTALIST” by Alain Aspect’s
http://arxiv.org/ftp/quant-ph/papers/0402/0402001.pdf
because it is closely related to the previous one. Then we can proceed with any paper you suggested and I would need some time to read them first. Then we can check any previous posts you suggest.
First let me respond to your question.
JesseM said:
Do you understand that Bell's theorem isn't making any claims about what the correct theory in the real world is, it's just about the incompatibility of the theory of QM with local realism?
So even if experiments turned out not to match the theory of QM, and experiments could be explained by a local realist model, this would have nothing to do with refuting Bell's theorem. DrChinese's challenge was specifically to try to construct a local realist model that agrees with all the predictions of QM, including the 100% correlation for entangled photons when the same polarizer angle is used.
I disagree with this assessment.
First, I want to clarify that “random settings” is referred to the angle between polarizers (set in parallel) and axes, but not to the angle between polarizers.
Second, the original Bell's theorem indeed don’t make explicit claims about what the correct theory is. However the incompatibility with math of QM means the incompatibility with Malus law (identical with a math of QM ) and experiments this law is based on. Therefore any model that is incompatible with result predicted by Malus law is doomed. It is why the Bell’s theorem implicitly claims the correctness of QM theory.
The Bell's theorem compares the math of the QM with the math of naïve classical ad-hoc model that suppose to reflects the EPR model/argument.
Page c2-48
“Let us illustrate the possibility of what Einstein had in mind in the context of the particular quantum mechanical predictions
already cited for the EPRB gedanken experiment. These predictions make it hard to believe in the completeness of quantum formalism. But of course outside that formalism they make no difficulty whatever for the notion of local causality. To show this explicitly we exhibit a trivial ad hoc space-time picture of what might go on. It is a modification of the naive classical picture already described…”
I think that Einstein would slap Bells’ hands for such distortion of EPR argument that is a 100% QM system (governed by wave function) plus hidden parameters as a way to explain QM behavior. Instead, Bell stripped QM properties from EPR model reducing into Newtonian mechanic. It is why Bell (and the rest) found appropriate explaining the Bell’s theorem in terms of balls, sucks and other tangible objects – because in Bell's interpretation the “EPR” model is not the QM system any more.
From this point on it is obvious that this “corpuscular” Newtonian model of photons wouldn’t be compatible with math of QM supported by experimental results of Malus law.
Fig.3 in
http://arxiv.org/ftp/quant-ph/papers/0402/0402001.pdf clearly illustrates this.
It is why the entire Bell’s inequality is based on false premise of comparing QM and Newtonian models.
As soon as Bell established this inequality he jumped to not substantiated conclusions as follow (see page C2-52):
“… Let us summarize once again the logic that leads to the impasse.
The EPRB correlations are such that the result of the experiment on one
side immediately foretells that on the other, whenever the analyzers
happen to be parallel. If we do not accept the intervention on one side
as a causal influence on the other, we seem obliged to admit that the
results on both sides are determined in advance anyway, independently
of the intervention on the other side, by signals from the source and
by the local magnet setting. But this has implications for non-parallel
settings which conflict with those of quantum mechanics. So we cannot
dismiss intervention on one side as a causal influence on the other.”
I found disturbingly unintelligent the conclusion that the “… intervention on one side as a causal influence on the other as inevitable…”
The EPR model offers clear and simple explanation of this phenomenon: both individual correlated photons behave according to QM wave function and therefore EPR photons are 100% in agreement with QM prediction for any non-parallel settings of polarizers.
I have to go now.