JesseM
Science Advisor
- 8,519
- 17
Another totally-confident-yet-totally-ignorant argument from miosim (there is a psychological explanation for this sort of thing). The second "mumbled" statement has nothing to do with how Bell ultimately defines "local causality", it's just meant as a "trivial" and "ad hoc" model that he starts out with as an example, then shows it doesn't work and abandons it. His actual proof of the theorem that local causality is incompatible with QM has nothing whatsoever to do with that model. But I [post=3257023]already told you this before[/post]:miosim said:Einstein didn’t know that his concept could be transformed into a circus.
According to EPR argument the two correlated particles are represented by the two different and independent wave functions. When the first wave function collapses it reviled one complemented parameter (+spin) that gaves us a knowledge about another complemented parameter (-spin) of the second wave function. Because this wave functions has no description of this parameter the wave function and QM accordingly is incomplete.
Now let see the Bell’s ‘reasonable’ reproduction of this EPR model:
“…Let us illustrate the possibility of what Einstein had in mind in the context of the particular quantum mechanical predictions already cited for the EPRB gedanken experiment. These predictions make it hard to believe in the completeness of quantum formalism…”
Then Bell ‘mumbles’ the following:
“…But of course outside that formalism they make no difficulty whatever for the notion of local causality. To show this explicitly we exhibit a trivial ad hoc space-time picture of what might go on. It is a modification of the naive classical picture already described. Certainly something must be modified in that, to reproduce the quantum phenomena. Previously, we implicitly assumed for the net force in the direction of the field gradient (which we always take to be in the same direction as the field) a form: F cos Q ….”
This is it. These are all efforts to recreate the EPR model in spirit of Einstein.
JesseM said:Yes, he starts by assuming a specific "naive classical model" with a modified force law given by equation (2), but if you read further in the paper he later makes the argument more general and considers what would have to be true in all possible models respecting the "local causality" (same as local realism) he mentions above. Note he immediately shows on p. C2-49 that this naive model fails to match up with QM "at intermediate angles", and then goes on to say:
"Of course this trivial model was just the first one we thought of, and it worked up to a point. Could we not be a little more clever, and device a model which reproduces the quantum formulae completely? No. It cannot be done, so long as action at a distance is excluded."
So he's saying all locally causal models which exclude action-at-a-distance will fail to match up with QM, not just the "trivial model" he brought up briefly on p. c2-48. To explain why this is true, he first starts with the analogy of Bertlmann's socks, which is intended to illustrate how one can derive an inequality based on the idea that if pairs of entangled particles (or pairs of socks) always given identical results when subjected to the same test, that must be because each member of the pair had a set of properties (assigned to them by the source when they were created at a common location) that gave them the same set of predetermined results for each possible test. In a "locally causal" universe this is the only way to explain how you always see perfect correlations whenever experimenters choose the same test, as he explains on c2-52:
"Let us summarize once again the logic that leads to the impasse. The EPRB correlations are such that the result of the experiment on one side immediately foretells that on the other, whenever the analyzers happen to be parallel. If we do not accept the intervention on one side as a causal influence on the other, we seem obliged to admit that the results on both sides are determined in advance anyway, independently of the intervention on the other side, by signals from the source and by the local magnet set."
They're not represented by "two independent wave functions" in QM, they're represented by a single wavefunction representing the entangled two-particle system. Bell is proving that no local theory can reproduce the QM prediction which is based on this single (nonlocal) wavefunction.miosim said:Bell (and his supporters) just forgets that the EPR particles are represented by the two independent wave functions and therefore their cos^2 behavior are identical to Bell’s QM model.
Bell's definition of local causality makes no specific assumptions about how the particles interact with the polarizers, but the definition is broad enough to include the possibility that the polarizers would modify polarization in a local way. Again, Bell's definition is exactly equivalent to my 1) and 2) (again see the links I gave at the end of [post=3278882]this post[/post]), and my two assumptions certainly don't rule out the possibility that the particles are modified by their interactions with the polarizers. If you want to engage Bell's argument, you need to try to think about these basic assumptions, not some strawman based on your lack of reading comprehension. You said you found my 1) and 2) too "technical", but I'd be happy to elaborate on any sentences or terms you found confusing if you want to make an effort to understand them, rather than just taking the intellectually lazy route of saying "too hard!" and going back to repeating the same old ignorant arguments and strawman, ignoring all refutations like a good http://redwing.hutman.net/~mreed/warriorshtm/ferouscranus.htm .miosim said:Secondly, if Bell decided to model EPR particles as classical ones, he must at least include interactions of these particles with polarizers (QM formalism has this interactions builtin) as follows: the polarizers, like optical ‘funnel’, modifies polarization of both photons in the direction of higher correlation and this way eliminating inequality with the QM prediction.
Last edited by a moderator: