Can heat flow into a body without increasing the mean kinetic energy?

Click For Summary
Heat can flow into a body without increasing the mean kinetic energy of its molecules, as seen during phase changes where internal energy increases without a temperature rise. This process involves specific latent heat, which is the energy required to change a substance's state at constant temperature. During a phase change, the potential energy of particles changes while their average kinetic energy remains the same, preventing temperature increase. The energy input is used to break intermolecular bonds, allowing molecules to move freely without raising the temperature until all bonds are broken. Thus, temperature remains constant until there is a uniform energy distribution among molecules.
AN630078
Messages
242
Reaction score
25
Homework Statement
I have come across a question concerning heat and temperature which I would appreciate any guidance towards. I have tried to find a comprehensive solution although I am uncertain whether my reasoning would be correct or applicable to the problem.

The temperature of a substance is proportional to the mean kinetic energy of the molecules of the body.
Can heat flow into a body without increasing the mean kinetic energy of its molecules? Explain. What do we call such heat?
Relevant Equations
E=mL
Yes, heat can flow into a body without increasing the mean kinetic energy of its molecules. Transferring heat energy to an object will raise its internal energy, this will not necessarily cause an increase in temperture. Specific latent heat is the energy required to change the state of one kilogram of a substance without changing its temperature. When a material experiences a phase change, its internal energy also changes; because the potential energy of the particles is altered while the temperature remains constant because the average kinetic energy of the particles remains the same. Therefore, latent heat is the energy released or absorbed during a constant temperature phase change.
This energy input does not raise the temperature but is used exclusively to break the cohesive intermolecular bonds between molecules to alter the state of the material, so that the molecules can move around at comparable kinetic energies; thus, there is no rise in temperature. The temperature will remain constant until all the intermolecular bonds are broken; no natural phenomenon will occur until there is a uniform distribution of energy among the surrounding molecules
 
Physics news on Phys.org
AN630078 said:
The temperature will remain constant until all the intermolecular bonds are broken; no natural phenomenon will occur until there is a uniform distribution of energy among the surrounding molecules
Temperature is a group characteristic. Individual molecules may have higher or lower energy levels.
 
Beams of electrons and protons move parallel to each other in the same direction. They ______. a. attract each other. b. repel each other. c. neither attract nor repel. d. the force of attraction or repulsion depends upon the speed of the beams. This is a previous-year-question of CBSE Board 2023. The answer key marks (b) as the right option. I want to know why we are ignoring Coulomb's force?