Dr Dr news
- 122
- 35
You need to clarify the problem statement. How do you get from the initial state to the final state?
The discussion revolves around the kinetic energy of an ideal gas, specifically addressing how changes in volume and pressure affect kinetic energy per molecule. The original poster presents two scenarios: one where the volume doubles at constant temperature and another where the volume doubles without heat transfer, but with a decrease in pressure. Participants engage in clarifying the implications of these changes on kinetic energy.
The discussion is ongoing, with participants providing insights and questioning assumptions. Some have offered clarifications regarding the definitions of kinetic energy and temperature, while others are still grappling with the implications of the problem's conditions. There is no explicit consensus yet, but productive dialogue is occurring around the concepts involved.
Participants note the importance of absolute temperature in the context of kinetic energy and question the relevance of volume changes under constant temperature conditions. There are also discussions about the implications of adiabatic processes and equilibrium states in relation to the ideal gas behavior.
Hmm..Dr Dr news said:You need to clarify the problem statement. How do you get from the initial state to the final state?
Is this related to number 2? Or what?Dr Dr news said:case 2) Without going into the gory detail, for an adiabatic process, p(V)^γ = con, where γ = c(p)/c(V) = 1.67 for a monatomic gas. which means that
p1(V1)^γ = p2(V2)^γ = (p1/1.3)(2 V1)^γ; 1.3 ≠ (2)^1.67. This is some unknown process - not adiabatic.
Wow. Thanks a lot for reviewing all questionsDr Dr news said:The first question is straightforward. Since the kinetic energy/molecule is (3/2)kT, the kinetic energy/mol is NA (3/2)kT =(3/2)RT. Further, this means that you are considering a monatomic gas which we know from kinetic theory has c(V) = 3R/2 and c(p) = 5R/2. The second question is for a V=con process, Q=?, since dV=0, Wk=0, and ΔU = Q, but ΔU=nc(V)ΔT=Q. The third question is for a p=con process, Wk=?, ΔU=Q-Wk, Wk=Q-ΔU=nc(p)ΔT-nc(V)ΔT=[c(p)-c(V)]nΔT=nRΔT=pΔV. The fourth question is for ΔT=0, Δε(kinetic)=?, since ε(kinetic)∝T, Δε(k)=0, The fifth question is for Q=0 and V(final)=2V(initial), an adiabatic expansion, ΔT=? The confusing part is the listed pressure ratio of p(final)=0.7p(initial). If it is truly an adiabatic expansion the relation p(f)/p(i)=[V(i)/V(f)]^γ=(1/2)^1.67=0.314. Maybe this is what was meant, p(f)=0.314p(i), just poorly worded, in that case T(f)/T(i)=[V(i)/V(f)]^(γ-1)=(1/2)^0.67=0.629=ε(k,f)/ε(k,i).
So, p f = 0.3 p iDr Dr news said:The first question is straightforward. Since the kinetic energy/molecule is (3/2)kT, the kinetic energy/mol is NA (3/2)kT =(3/2)RT. Further, this means that you are considering a monatomic gas which we know from kinetic theory has c(V) = 3R/2 and c(p) = 5R/2. The second question is for a V=con process, Q=?, since dV=0, Wk=0, and ΔU = Q, but ΔU=nc(V)ΔT=Q. The third question is for a p=con process, Wk=?, ΔU=Q-Wk, Wk=Q-ΔU=nc(p)ΔT-nc(V)ΔT=[c(p)-c(V)]nΔT=nRΔT=pΔV. The fourth question is for ΔT=0, Δε(kinetic)=?, since ε(kinetic)∝T, Δε(k)=0, The fifth question is for Q=0 and V(final)=2V(initial), an adiabatic expansion, ΔT=? The confusing part is the listed pressure ratio of p(final)=0.7p(initial). If it is truly an adiabatic expansion the relation p(f)/p(i)=[V(i)/V(f)]^γ=(1/2)^1.67=0.314. Maybe this is what was meant, p(f)=0.314p(i), just poorly worded, in that case T(f)/T(i)=[V(i)/V(f)]^(γ-1)=(1/2)^0.67=0.629=ε(k,f)/ε(k,i).
Ok. Thanks sirDr Dr news said:That is what it looks like to me.