Dr Dr news
- 122
- 35
You need to clarify the problem statement. How do you get from the initial state to the final state?
The discussion centers on the kinetic energy of an ideal gas, specifically addressing two scenarios: doubling the volume at constant temperature and doubling the volume with a decrease in pressure. The kinetic energy per molecule is defined as Ek = (3/2)kT, where k is Boltzmann's constant and T is the absolute temperature. It is established that in the first scenario, the kinetic energy does not change, resulting in a ratio of 1. In the second scenario, the temperature increases due to the pressure drop, leading to a greater kinetic energy, calculated as Ek2 = 1.4Ek1, thus indicating a 0.4 increase in kinetic energy.
PREREQUISITESStudents of physics, particularly those studying thermodynamics and kinetic theory, as well as educators looking to clarify concepts related to the behavior of ideal gases under varying conditions.
Hmm..Dr Dr news said:You need to clarify the problem statement. How do you get from the initial state to the final state?
Is this related to number 2? Or what?Dr Dr news said:case 2) Without going into the gory detail, for an adiabatic process, p(V)^γ = con, where γ = c(p)/c(V) = 1.67 for a monatomic gas. which means that
p1(V1)^γ = p2(V2)^γ = (p1/1.3)(2 V1)^γ; 1.3 ≠ (2)^1.67. This is some unknown process - not adiabatic.
Wow. Thanks a lot for reviewing all questionsDr Dr news said:The first question is straightforward. Since the kinetic energy/molecule is (3/2)kT, the kinetic energy/mol is NA (3/2)kT =(3/2)RT. Further, this means that you are considering a monatomic gas which we know from kinetic theory has c(V) = 3R/2 and c(p) = 5R/2. The second question is for a V=con process, Q=?, since dV=0, Wk=0, and ΔU = Q, but ΔU=nc(V)ΔT=Q. The third question is for a p=con process, Wk=?, ΔU=Q-Wk, Wk=Q-ΔU=nc(p)ΔT-nc(V)ΔT=[c(p)-c(V)]nΔT=nRΔT=pΔV. The fourth question is for ΔT=0, Δε(kinetic)=?, since ε(kinetic)∝T, Δε(k)=0, The fifth question is for Q=0 and V(final)=2V(initial), an adiabatic expansion, ΔT=? The confusing part is the listed pressure ratio of p(final)=0.7p(initial). If it is truly an adiabatic expansion the relation p(f)/p(i)=[V(i)/V(f)]^γ=(1/2)^1.67=0.314. Maybe this is what was meant, p(f)=0.314p(i), just poorly worded, in that case T(f)/T(i)=[V(i)/V(f)]^(γ-1)=(1/2)^0.67=0.629=ε(k,f)/ε(k,i).
So, p f = 0.3 p iDr Dr news said:The first question is straightforward. Since the kinetic energy/molecule is (3/2)kT, the kinetic energy/mol is NA (3/2)kT =(3/2)RT. Further, this means that you are considering a monatomic gas which we know from kinetic theory has c(V) = 3R/2 and c(p) = 5R/2. The second question is for a V=con process, Q=?, since dV=0, Wk=0, and ΔU = Q, but ΔU=nc(V)ΔT=Q. The third question is for a p=con process, Wk=?, ΔU=Q-Wk, Wk=Q-ΔU=nc(p)ΔT-nc(V)ΔT=[c(p)-c(V)]nΔT=nRΔT=pΔV. The fourth question is for ΔT=0, Δε(kinetic)=?, since ε(kinetic)∝T, Δε(k)=0, The fifth question is for Q=0 and V(final)=2V(initial), an adiabatic expansion, ΔT=? The confusing part is the listed pressure ratio of p(final)=0.7p(initial). If it is truly an adiabatic expansion the relation p(f)/p(i)=[V(i)/V(f)]^γ=(1/2)^1.67=0.314. Maybe this is what was meant, p(f)=0.314p(i), just poorly worded, in that case T(f)/T(i)=[V(i)/V(f)]^(γ-1)=(1/2)^0.67=0.629=ε(k,f)/ε(k,i).
Ok. Thanks sirDr Dr news said:That is what it looks like to me.