Can I obtain the inverse Laplace transform using complex analysis?

LagrangeEuler
Messages
711
Reaction score
22
Homework Statement
1. Find inverse Laplace transform
[tex]\mathcal{L}^{-1}[\frac{e^{-5s}}{s^2-4}][/tex]
Relevant Equations
Inverse Laplace transform can be calculated as sum of residues of ##F(s)e^{st}##.
[tex]\mathcal{L}^{-1}[F(s)]=\sum^n_{k=1}Res[F(s)e^{st},s=\alpha_k][/tex]
\mathcal{L}^{-1}[\frac{e^{-5s}}{s^2-4}]=Res[e^{-5s}\frac{1}{s^2-4}e^{st},s=2]+Res[e^{-5s}\frac{1}{s^2-4}e^{st},s=-2]
From that I am getting
f(t)=\frac{1}{4}e^{2(t-5)}-\frac{1}{4}e^{-2(t-5)}. And this is not correct. Result should be
f(t)=\theta(t-5)(\frac{1}{4}e^{2(t-5)}-\frac{1}{4}e^{-2(t-5)})
where ##\theta## is Heaviside function. Where is the mistake?
 
Physics news on Phys.org
LagrangeEuler said:
Homework Statement:: 1. Find inverse Laplace transform
\mathcal{L}^{-1}[\frac{e^{-5s}}{s^2-4}]
Relevant Equations:: Inverse Laplace transform can be calculated as sum of residues of ##F(s)e^{st}##.

This is only valid if \lim_{\operatorname{Re}(s) \to -\infty} F(s)e^{st} = 0. That is not the case for t < 5.
 
  • Like
Likes LagrangeEuler
Thank you. Is it a way to show this somehow? Or to use some version of complex analysis to get this?
 
So my mine question, in this case, is can I somehow obtain this result using complex analysis?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top