MHB Can Inequality be Proven for Positive Reals a and b?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
The discussion focuses on proving the inequality $$\frac{\sqrt{a^2+b^2}}{a+b}+\sqrt{\frac{ab}{a^2+b^2}}\le \sqrt{2}$$ for all positive real numbers a and b. Participants express initial confidence in the problem's solvability, but one contributor notes the challenge posed by the original poster's reputation. The conversation highlights the complexity of the inequality despite its seemingly straightforward appearance. The proof is acknowledged as well-executed by a participant named greg1313. The thread emphasizes the mathematical exploration of inequalities involving positive reals.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $$\frac{\sqrt{a^2+b^2}}{a+b}+\sqrt{\frac{ab}{a^2+b^2}}\le \sqrt{2}$$ for all positive reals $a$ and $b$.
 
Mathematics news on Phys.org
You know, I just looked at this and said to myself "Oh! This doesn't look so hard." (Thinking) Then I noted who posted it. (Doh)

-Dan
 
anemone said:
Prove that $$\frac{\sqrt{a^2+b^2}}{a+b}+\sqrt{\frac{ab}{a^2+b^2}}\le \sqrt{2}$$ for all positive reals $a$ and $b$.

Squaring the LHS we have

$$\dfrac{a^2+b^2}{(a+b)^2}+2\dfrac{\sqrt{ab}}{a+b}+\dfrac{ab}{a^2+b^2}$$

Which may be written as

$$1-\dfrac{2ab}{(a+b)^2}+2\dfrac{\sqrt{ab}}{a+b}+\dfrac{ab}{a^2+b^2}$$

From th AM-GM inequality, $2\dfrac{\sqrt{ab}}{a+b}$ has an upper bound of $1$, so we have

$$1-\dfrac{2ab}{(a+b)^2}+1+\dfrac{ab}{a^2+b^2}$$

Now,

$$\dfrac{ab}{a^2+b^2}-\dfrac{2ab}{(a+b)^2}=\dfrac{ab(a+b)^2-2ab(a^2+b^2)}{(a^2+b^2)(a+b)^2}$$

Focussing on the numerator,

$$ab(a+b)^2-2ab(a^2+b^2)=a^3b+2a^2b^2+ab^3-2a^3b-2ab^3$$
$$=ab(2ab-a^2-b^2)$$

Now consider

$$(a-b)^2\ge0$$

$$a^2-2ab+b^2\ge0$$

$$a^2+b^2\ge2ab$$

hence

$$ab(2ab-a^2-b^2)$$

has an upper bound of $0$ so we may state

$$\dfrac{a^2+b^2}{(a+b)^2}+2\dfrac{\sqrt{ab}}{a+b}+\dfrac{ab}{a^2+b^2}\le2$$

and the original inequality follows.
 
greg1313 said:
Squaring the LHS we have

$$\dfrac{a^2+b^2}{(a+b)^2}+2\dfrac{\sqrt{ab}}{a+b}+\dfrac{ab}{a^2+b^2}$$

Which may be written as

$$1-\dfrac{2ab}{(a+b)^2}+2\dfrac{\sqrt{ab}}{a+b}+\dfrac{ab}{a^2+b^2}$$

From th AM-GM inequality, $2\dfrac{\sqrt{ab}}{a+b}$ has an upper bound of $1$, so we have

$$1-\dfrac{2ab}{(a+b)^2}+1+\dfrac{ab}{a^2+b^2}$$

Now,

$$\dfrac{ab}{a^2+b^2}-\dfrac{2ab}{(a+b)^2}=\dfrac{ab(a+b)^2-2ab(a^2+b^2)}{(a^2+b^2)(a+b)^2}$$

Focussing on the numerator,

$$ab(a+b)^2-2ab(a^2+b^2)=a^3b+2a^2b^2+ab^3-2a^3b-2ab^3$$
$$=ab(2ab-a^2-b^2)$$

Now consider

$$(a-b)^2\ge0$$

$$a^2-2ab+b^2\ge0$$

$$a^2+b^2\ge2ab$$

hence

$$ab(2ab-a^2-b^2)$$

has an upper bound of $0$ so we may state

$$\dfrac{a^2+b^2}{(a+b)^2}+2\dfrac{\sqrt{ab}}{a+b}+\dfrac{ab}{a^2+b^2}\le2$$

and the original inequality follows.
Very well done, greg1313!:cool:
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
990
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 41 ·
2
Replies
41
Views
5K