MHB Can Inequality be Proven for Positive Reals a and b?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
The discussion focuses on proving the inequality $$\frac{\sqrt{a^2+b^2}}{a+b}+\sqrt{\frac{ab}{a^2+b^2}}\le \sqrt{2}$$ for all positive real numbers a and b. Participants express initial confidence in the problem's solvability, but one contributor notes the challenge posed by the original poster's reputation. The conversation highlights the complexity of the inequality despite its seemingly straightforward appearance. The proof is acknowledged as well-executed by a participant named greg1313. The thread emphasizes the mathematical exploration of inequalities involving positive reals.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $$\frac{\sqrt{a^2+b^2}}{a+b}+\sqrt{\frac{ab}{a^2+b^2}}\le \sqrt{2}$$ for all positive reals $a$ and $b$.
 
Mathematics news on Phys.org
You know, I just looked at this and said to myself "Oh! This doesn't look so hard." (Thinking) Then I noted who posted it. (Doh)

-Dan
 
anemone said:
Prove that $$\frac{\sqrt{a^2+b^2}}{a+b}+\sqrt{\frac{ab}{a^2+b^2}}\le \sqrt{2}$$ for all positive reals $a$ and $b$.

Squaring the LHS we have

$$\dfrac{a^2+b^2}{(a+b)^2}+2\dfrac{\sqrt{ab}}{a+b}+\dfrac{ab}{a^2+b^2}$$

Which may be written as

$$1-\dfrac{2ab}{(a+b)^2}+2\dfrac{\sqrt{ab}}{a+b}+\dfrac{ab}{a^2+b^2}$$

From th AM-GM inequality, $2\dfrac{\sqrt{ab}}{a+b}$ has an upper bound of $1$, so we have

$$1-\dfrac{2ab}{(a+b)^2}+1+\dfrac{ab}{a^2+b^2}$$

Now,

$$\dfrac{ab}{a^2+b^2}-\dfrac{2ab}{(a+b)^2}=\dfrac{ab(a+b)^2-2ab(a^2+b^2)}{(a^2+b^2)(a+b)^2}$$

Focussing on the numerator,

$$ab(a+b)^2-2ab(a^2+b^2)=a^3b+2a^2b^2+ab^3-2a^3b-2ab^3$$
$$=ab(2ab-a^2-b^2)$$

Now consider

$$(a-b)^2\ge0$$

$$a^2-2ab+b^2\ge0$$

$$a^2+b^2\ge2ab$$

hence

$$ab(2ab-a^2-b^2)$$

has an upper bound of $0$ so we may state

$$\dfrac{a^2+b^2}{(a+b)^2}+2\dfrac{\sqrt{ab}}{a+b}+\dfrac{ab}{a^2+b^2}\le2$$

and the original inequality follows.
 
greg1313 said:
Squaring the LHS we have

$$\dfrac{a^2+b^2}{(a+b)^2}+2\dfrac{\sqrt{ab}}{a+b}+\dfrac{ab}{a^2+b^2}$$

Which may be written as

$$1-\dfrac{2ab}{(a+b)^2}+2\dfrac{\sqrt{ab}}{a+b}+\dfrac{ab}{a^2+b^2}$$

From th AM-GM inequality, $2\dfrac{\sqrt{ab}}{a+b}$ has an upper bound of $1$, so we have

$$1-\dfrac{2ab}{(a+b)^2}+1+\dfrac{ab}{a^2+b^2}$$

Now,

$$\dfrac{ab}{a^2+b^2}-\dfrac{2ab}{(a+b)^2}=\dfrac{ab(a+b)^2-2ab(a^2+b^2)}{(a^2+b^2)(a+b)^2}$$

Focussing on the numerator,

$$ab(a+b)^2-2ab(a^2+b^2)=a^3b+2a^2b^2+ab^3-2a^3b-2ab^3$$
$$=ab(2ab-a^2-b^2)$$

Now consider

$$(a-b)^2\ge0$$

$$a^2-2ab+b^2\ge0$$

$$a^2+b^2\ge2ab$$

hence

$$ab(2ab-a^2-b^2)$$

has an upper bound of $0$ so we may state

$$\dfrac{a^2+b^2}{(a+b)^2}+2\dfrac{\sqrt{ab}}{a+b}+\dfrac{ab}{a^2+b^2}\le2$$

and the original inequality follows.
Very well done, greg1313!:cool:
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
969
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 41 ·
2
Replies
41
Views
5K