Can Logarithms Be Used to Solve a Tricky Exponential Problem?

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Logarithm
Click For Summary

Homework Help Overview

The discussion revolves around the use of logarithms to solve an exponential equation involving variables and constants. Participants are exploring the relationships between logarithmic and exponential forms, particularly in the context of proving equalities involving sums and products of logarithms.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants are attempting to manipulate logarithmic expressions to establish relationships between variables. Some are questioning the clarity of certain steps in the reasoning process, while others are exploring different approaches to prove the equality of two expressions.

Discussion Status

The discussion is active, with various participants contributing their thoughts and attempts. Some have provided insights into their reasoning, while others are seeking clarification on specific parts of the arguments presented. There is no explicit consensus yet, but several lines of reasoning are being explored.

Contextual Notes

Participants are working under the constraints of homework guidelines, which may limit the extent of assistance they can provide to one another. There is an emphasis on understanding the underlying concepts rather than simply arriving at a solution.

chwala
Gold Member
Messages
2,828
Reaction score
425
Homework Statement
see attached.
Relevant Equations
logs
Find question here;

1640746382017.png
See my attempt;
$$a^x=bc$$
$$(a^x)^{yz} = (bc)^{yz}$$
$$a^{xyz} = (b^y)^z (c^z)^y $$
$$a^{xyz} = (ac)^z (ab)^y $$
$$a^{xyz} = a^z c^z a^y b^y$$
$$a^{xyz} = a^z(ab)a^y(ac)$$
$$a^{xyz} = a^2(bc) a^{y+z}$$
$$a^{xyz} = a^{y+z+2} (bc)$$
$$a^{xyz} = a^{y+z+2} a^x$$
$$a^{xyz} = a^{x+y+z+2} $$ bingo!

I would be interested in the proof by use of logarithms...i tried this and i was going round in circles...but i should be able to do it! I guess the hint here would be to express all the logs to base ##a##...I will check this out later. Meanwhile, any other approach is welcome:cool:...time now for a deserved cake and coffee...
 
Last edited:
Physics news on Phys.org
If ## x = \log_{a}{bc} ##

Then ## x+1 = \log_{a}{bc} + \log_{a}{a} = \log_{a}{abc} ##

We can equate all the arguments in this way namely abc and then turn it into base by taking reverses.

So,

##\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1} = 1## and this gives the desired equality.
 
  • Like
Likes   Reactions: chwala and anuttarasammyak
Sunay_ said:
If ## x = \log_{a}{bc} ##

Then ## x+1 = \log_{a}{bc} + \log_{a}{a} = \log_{a}{abc} ##

We can equate all the arguments in this way namely abc and then turn it into base by taking reverses.

So,

##\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1} = 1## and this gives the desired equality.
Looks interesting...I'll look at this later...thanks.
 
  • Like
Likes   Reactions: Sunay_
This part;
## x+1 = \log_{a}{bc} + \log_{a}{a} = \log_{a}{abc} ## is clear. Am trying to understand the next part of your working...i do not seem to get it...
 
Ok, since they want us to prove( to show that lhs = rhs of equation) that,

$$x+y+z=xyz-2$$
$$⇒x+y+z+2=xyz$$...i will now try to prove that the lhs= rhs.
$$\log_a(bc)+\log_b(ac)+\log_c(ab)+2= (\log_a(bc))(\log_b(ac))(\log_c(ab))$$
Consider the lhs of the equation, it follows that;
$$\log_ab+\log_ac+\log_ba+\log_bc+\log_ca+log_cb$$
$$⇒(m+\frac {1}{d}+\frac {1}{m}+q+d+\frac {1}{q})+2$$
$$=m+q+d+\frac {1}{m}+\frac {1}{q}+\frac {1}{d}+2$$

Now, consider the rhs of the equation,
$$(\log_a(bc))(\log_b(ac))(\log_c(ab))= (m+\frac {1}{d})(q+\frac {1}{m})(d+\frac {1}{q})$$
$$=mqd+m+d+\frac {1}{q}+q+ \frac {1}{d}+ \frac {1}{m}+ \frac {1}{qmd}$$
$$=m+q+d+\frac {1}{m}+\frac {1}{q}+\frac {1}{d}+mqd+ \frac {1}{qmd}$$

Now to deal with,
$$mqd+ \frac {1}{qmd}$$, note that,
$$mqd=(\log_ab)(\log_bc)(log_ca)=\log_ab \frac {\log_ac}{\log_ab}\frac {\log_aa}{\log_ac}=1$$
therefore,
$$mqd+ \frac {1}{qmd}=1+\frac{1}{1}=2$$
thus proved. Cheers guys:cool::cool:
 
Last edited:
  • Wow
Likes   Reactions: bagasme
chwala said:
This part;
## x+1 = \log_{a}{bc} + \log_{a}{a} = \log_{a}{abc} ## is clear. Am trying to understand the next part of your working...i do not seem to get it...

I tried to imply that if ## x+1 = \log_{a}{abc} ## then ## \frac{1}{x+1} = \log_{abc}{a} ##

The same is true for ##\log_{abc}{b}## and ##\log_{abc}{c}##

So, because ## \log_{abc}{a}+\log_{abc}{b}+\log_{abc}{c}=\log_{abc}{abc}=1 ## is true,

The solution can be found using this:
Sunay_ said:
##\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1} = 1## and this gives the desired equality.

I hope I could be of help.
 
  • Like
Likes   Reactions: chwala

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K