Can magnetic fields do positive work in certain circumstances?

Click For Summary

Discussion Overview

The discussion centers on whether magnetic fields can perform positive work under certain circumstances, exploring the nature of magnetic forces, the conditions under which magnetic fields are conservative or non-conservative, and the implications for devices like electric motors and dynamos.

Discussion Character

  • Debate/contested
  • Technical explanation
  • Conceptual clarification

Main Points Raised

  • Some participants propose that magnetic fields can do positive work in specific scenarios, particularly in electric motors where the displacement of parts is zero but work is done on a load.
  • Others argue that magnetic fields are conservative in certain situations, but become non-conservative with the presence of currents or time-varying electric fields.
  • A participant states that magnetic forces do not perform work, as the force is always perpendicular to the velocity of a charge, suggesting that work in motors is done by electric forces instead.
  • Some contributions discuss the mathematical framework, including Maxwell's equations and the Poynting theorem, to analyze energy density and work done in electromagnetic fields.
  • There is a mention of the Laplace force, with some participants expressing confusion about its classification as a magnetic force and its relation to electric forces.
  • One participant notes that the work done on a wire in a magnetic field is electric in nature, raising questions about the terminology used in the discussion.

Areas of Agreement / Disagreement

Participants express differing views on whether magnetic fields can do work and the nature of that work. There is no consensus on the classification of magnetic forces or the implications for energy transfer in electromagnetic systems.

Contextual Notes

Participants highlight limitations in understanding the Laplace force and its implications, as well as the complexity of the relationships between electric and magnetic forces in various scenarios.

  • #31
Indeed, you can derive also this from a classical picture (a la Ampere). The idea is that an atom ("particle") may be somehow composed of moving charges with some "molecular current". Then the force on this current in a magnetic field is
$$\vec{F}=\int_{\mathbb{R}^3} \mathrm{d}^3 x \vec{j}(\vec{x}) \times \vec{B}(\vec{x}).$$
Now you can assume that ##\vec{j} \neq 0## only for the very small extent of this "atom". So you can expand the magnetic field around the place of the atom (assumed to be at ##\vec{x}_0=0##). This gives
$$\vec{F}=\int_{\mathbb{R}^3} \mathrm{d}^3 x \vec{j}(\vec{x}) \times [\vec{B}(0)+\vec{x} \cdot \vec{B}(0)].$$
Now, because of ##\vec{\nabla} \cdot \vec{j}=0## one can derive that
$$\int \mathrm{d}^3 x \vec{j}=0.$$
The 2nd term can be transformed to
$$\vec{F}=\vec{\nabla} (\vec{\mu} \cdot \vec{B})$$
with the magnetic moment
$$\vec{\mu}=\frac{1}{2} \int \mathrm{d}^3 x \vec{x} \times \vec{j}.$$
So indeed the potential of the force is
$$V=-\vec{\mu} \cdot \vec{B}.$$
You can also derive the torque in a similar way
$$\vec{\tau}=\int \mathrm{d}^3 x \vec{x} \times (\vec{x} \times \vec{B})=\cdots=\vec{\mu} \times \vec{B}.$$
From the definition of the magnetic moment you also get the relation to (orbital) angular momentum, rewriting
$$\vec{j}=q n \vec{v}.$$
Here ##\vec{n}## is the particle-number density and ##q## the charge of the particles making up the molecular current. With that we have
$$\vec{\mu}=\int \mathrm{d}^3 x \frac{1}{2} n q \vec{x} \times \vec{v} = \int \mathrm{d}^3 \frac{1}{2} \frac{n q}{m} \vec{x} \times \vec{p}=\frac{q}{2m} \vec{L},$$
where ##\vec{L}## is the angular momentum of the particles making up the molecular current.

Today we know that the magnetic moment is not only made up by such classical currents of moving charges with the corresponding orbital angular momentum, but also by the spin of the particles making up the current, e.g., the electrons around a nucleus in an atom. There is, however, another factor, the Lande or gyromagnetic factor. For an electron this factor is about 2. From the above classical model with the orbital angular momentum of Amperian currents the gyro factor comes out to be 1. Famously Einstein and de Haas thought to have confirmed this in their famous experiment, although de Haas indeed found also values for the gyro factor larger than 1. Not much later other physicists found the gyro factor of ferromagnets to be rather closer to 2, which was of course not understandable in this time (around 1915) . Today we understand it as the empirical evidence that most of the magnetization of a piece of iron is due to electron spins.

For more complicated particles like protons or neutrons and other hadrons the gyro factors' origin are very complicated and even not completely understood today. Here the elementary entities making up the particles are quarks and gluons, and how the spin and magnetic moment is "made up" of these constituents is very complicated and under ungoing research.
 
  • Like
Likes   Reactions: Charles Link and etotheipi

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K