- #1

nomadreid

Gold Member

- 1,682

- 211

- TL;DR Summary
- Do quantum effects as well as thermodynamic laws forbid zero Kelvin? Is there a non-zero greatest lower bound?

In https://phys.org/news/2016-09-cold-black-holes.html it is stated that a supermassive black hole interior could be 10^-14 degrees Kelvin. Is there a limit, perhaps due to quantum effects, below which a temperature (in a black hole or elsewhere) can go? Or do the possibilities approach 0 asymptotically, with only 0 being the theoretical minimum?

Putting it slightly differently: Usually the laws of thermodynamics are invoked to forbid absolute zero; in https://en.wikipedia.org/wiki/Absolute_zero, it is stated that one cannot reach absolute zero by thermodynamic means. Are there other means besides thermodynamic that could subtract energy, or are there quantum effects that would forbid it as well?

Putting it slightly differently: Usually the laws of thermodynamics are invoked to forbid absolute zero; in https://en.wikipedia.org/wiki/Absolute_zero, it is stated that one cannot reach absolute zero by thermodynamic means. Are there other means besides thermodynamic that could subtract energy, or are there quantum effects that would forbid it as well?