MHB Can Set Union Have an Additive Inverse Like Real Numbers?

paulmdrdo1
Messages
382
Reaction score
0
1.show that there is no axiom for set union that correspond to "Existence of additive inverses" for real numbers, by demonstrating that in general it is impossible to find a set X such that $A\cup X=\emptyset$. what is the only set $\emptyset$ which possesses an inverse in this sense?

2. show that the operation of subtraction is not commutative,that is, it is possible to find real numbers a and b such that $b-a\not = a-b$. what can be said about a and b if $b-a=a-b?$

what to do? i don't understand what question 1 is asking.
 
Last edited:
Physics news on Phys.org
paulmdrdo said:
what to do? i don't understand what question 1 is asking.
Question 1 asks you to find a set $A$ such that $A\cup X\ne\emptyset$ for all sets $X$. Such $A$ is a counterexample to the property

For every $A$ there exists an $X$ such that $A\cup X=\emptyset$ (*)

which is an analog of the "Existence of additive inverses" for real numbers. It also asks to find a unique set $A$ for which (*) is true.
 
If A is non-empty (for concreteness, let A = {a}), then A U X is also non-empty, because no matter what X is, A U X contains at least the element a.

Thus if A U X = Ø (for some X) it must be the case that A = Ø. What must X be, here?
 
X must also be empty. am i right? and evegenymakarov what does this symbol mean (*)?
 
paulmdrdo said:
X must also be empty. am i right?
Yes.

paulmdrdo said:
evegenymakarov what does this symbol mean (*)?
I denoted the statement "For every $A$ there exists an $X$ such that $A\cup X=\emptyset$" by (*) in order to refer to it later. This is often done in math texts. The label like (*) or (1) is usually located near the right page margin.
 
Thread 'How to define vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
0
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 26 ·
Replies
26
Views
675