Can Simpson's Rule be Applied to $$I_{35}$$?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Applied
Click For Summary
SUMMARY

This discussion focuses on applying Simpson's Rule to evaluate the integral $$I_{35}=\int_{0}^{4} \left(3{x}^{5}-8{x}^{3}\right)\,dx$$. The exact value of the integral is calculated as 1536 using Wolfram Alpha. The forum participants demonstrate the application of Simpson's Rule for various values of n, specifically n=4 and n=8, yielding approximate results of 1550.67 and 1537, respectively. The methodology for calculating Simpson's Rule is clearly outlined, emphasizing the formula and the steps involved.

PREREQUISITES
  • Understanding of integral calculus, specifically definite integrals
  • Familiarity with Simpson's Rule for numerical integration
  • Basic algebra skills for evaluating polynomial functions
  • Experience with mathematical notation and expressions
NEXT STEPS
  • Learn how to derive Simpson's Rule from the Trapezoidal Rule
  • Explore higher-order numerical integration techniques, such as Romberg integration
  • Investigate the error analysis associated with Simpson's Rule
  • Practice applying Simpson's Rule to more complex functions and different intervals
USEFUL FOR

Students and professionals in mathematics, engineering, and physics who are interested in numerical methods for solving integrals, as well as educators teaching calculus concepts.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
do be done by Simpsons Rule for $n=4, 8, 16, 32 $

$$I_{35}=\int_{0}^{4} \left(3{x}^{5}-8{x}^{3}\right)\,dx$$

before I even start on this and seeing the graph how can SR even be done on this?
 
Physics news on Phys.org
First, let's get the exact answer so we know what to expect...W|A gives:

$$\int_0^4 3x^5-8x^3\,dx=1536$$

Okay, next, we need:

[box=green]
Simpson's Rule

$$\int_a^b f(x)\,dx\approx S_n$$

where

$$S_n=\frac{b-a}{3n}\left(f\left(x_0 \right)+4f\left(x_1 \right)+2f\left(x_2 \right)+\cdots+2f\left(x_{n-2} \right)+4f\left(x_{n-1} \right)+f\left(x_n \right) \right)$$

$$x_i=a+i\frac{b-a}{n}$$[/box]

We are given $a=0$ and $b=4$...and so let's begin with the first case $S_4$.

i) $n=4$.

With this value for $n$, we find that $x_i=i$. And so:

$$S_4=\frac{1}{3}\left(f(0)+4f(1)+2f(2)+4f(3)+f(4)\right)=\frac{1}{3}(0+4(-5)+2(32)+4(512)+2560)=\frac{4652}{3}=1550.\overline{6}$$

Can you proceed for the other values of $n$?
 
$$I_{35 }= \int_0^4 3x^5-8x^3\,dx=1536=S_n$$
$$S_n=\frac{b-a}{3n}\left(f\left(x_0 \right)+4f\left(x_1 \right)+2f\left(x_2 \right)+\cdots+2f\left(x_{n-2} \right)+4f\left(x_{n-1} \right)+f\left(x_n \right) \right)$$$$x_i=a+i\frac{b-a}{n}$$

$\displaystyle a=0 \ \ b=4$

i) $\displaystyle n=4 \ \ x_i=i$

$\displaystyle
S_4=\frac{1}{3}\left(f(0)+4f(1)+2f(2)+4f(3)+f(4)\right)=\frac{1}{3}(0+4(-5)+2(32)+4(512)+2560)=\frac{4652}{3}=1550.\overline{6}$
---------------------------------
ii) $\displaystyle n=8 \ \ x_i=0+i\frac{4-0}{8} =\frac{i}{2}$

$\displaystyle
S_8=\frac{1}{6}
\left[
f(0)+4f\left(\frac{1}{2}\right)
+2f\left(\frac{2}{2}\right)
+4f\left(\frac{3}{2}\right)
+2f\left(\frac{4}{2}\right)
+4f\left(\frac{5}{2}\right)
+2f\left(\frac{6}{2}\right)
+4f\left(\frac{7}{2}\right)
+f\left(\frac{8}{2}\right)
\right]\approx 1537$

Ill stop here since the $n=16$ and $n=32$ would be done the same way
☕
 
Last edited:

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K