MHB Can Simpson's Rule be Applied to $$I_{35}$$?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Applied
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
do be done by Simpsons Rule for $n=4, 8, 16, 32 $

$$I_{35}=\int_{0}^{4} \left(3{x}^{5}-8{x}^{3}\right)\,dx$$

before I even start on this and seeing the graph how can SR even be done on this?
 
Physics news on Phys.org
First, let's get the exact answer so we know what to expect...W|A gives:

$$\int_0^4 3x^5-8x^3\,dx=1536$$

Okay, next, we need:

[box=green]
Simpson's Rule

$$\int_a^b f(x)\,dx\approx S_n$$

where

$$S_n=\frac{b-a}{3n}\left(f\left(x_0 \right)+4f\left(x_1 \right)+2f\left(x_2 \right)+\cdots+2f\left(x_{n-2} \right)+4f\left(x_{n-1} \right)+f\left(x_n \right) \right)$$

$$x_i=a+i\frac{b-a}{n}$$[/box]

We are given $a=0$ and $b=4$...and so let's begin with the first case $S_4$.

i) $n=4$.

With this value for $n$, we find that $x_i=i$. And so:

$$S_4=\frac{1}{3}\left(f(0)+4f(1)+2f(2)+4f(3)+f(4)\right)=\frac{1}{3}(0+4(-5)+2(32)+4(512)+2560)=\frac{4652}{3}=1550.\overline{6}$$

Can you proceed for the other values of $n$?
 
$$I_{35 }= \int_0^4 3x^5-8x^3\,dx=1536=S_n$$
$$S_n=\frac{b-a}{3n}\left(f\left(x_0 \right)+4f\left(x_1 \right)+2f\left(x_2 \right)+\cdots+2f\left(x_{n-2} \right)+4f\left(x_{n-1} \right)+f\left(x_n \right) \right)$$$$x_i=a+i\frac{b-a}{n}$$

$\displaystyle a=0 \ \ b=4$

i) $\displaystyle n=4 \ \ x_i=i$

$\displaystyle
S_4=\frac{1}{3}\left(f(0)+4f(1)+2f(2)+4f(3)+f(4)\right)=\frac{1}{3}(0+4(-5)+2(32)+4(512)+2560)=\frac{4652}{3}=1550.\overline{6}$
---------------------------------
ii) $\displaystyle n=8 \ \ x_i=0+i\frac{4-0}{8} =\frac{i}{2}$

$\displaystyle
S_8=\frac{1}{6}
\left[
f(0)+4f\left(\frac{1}{2}\right)
+2f\left(\frac{2}{2}\right)
+4f\left(\frac{3}{2}\right)
+2f\left(\frac{4}{2}\right)
+4f\left(\frac{5}{2}\right)
+2f\left(\frac{6}{2}\right)
+4f\left(\frac{7}{2}\right)
+f\left(\frac{8}{2}\right)
\right]\approx 1537$

Ill stop here since the $n=16$ and $n=32$ would be done the same way
☕
 
Last edited:

Similar threads

Back
Top