MHB Can Simpson's Rule be Applied to $$I_{35}$$?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Applied
Click For Summary
Simpson's Rule can be applied to evaluate the integral $$I_{35}=\int_{0}^{4} (3x^{5}-8x^{3})\,dx$$. The exact value of the integral is 1536, as confirmed by Wolfram Alpha. For $n=4$, the approximation using Simpson's Rule yields $S_4 \approx 1550.67$. For $n=8$, the approximation is around 1537. The discussion indicates that further calculations for $n=16$ and $n=32$ would follow the same methodology.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
do be done by Simpsons Rule for $n=4, 8, 16, 32 $

$$I_{35}=\int_{0}^{4} \left(3{x}^{5}-8{x}^{3}\right)\,dx$$

before I even start on this and seeing the graph how can SR even be done on this?
 
Physics news on Phys.org
First, let's get the exact answer so we know what to expect...W|A gives:

$$\int_0^4 3x^5-8x^3\,dx=1536$$

Okay, next, we need:

[box=green]
Simpson's Rule

$$\int_a^b f(x)\,dx\approx S_n$$

where

$$S_n=\frac{b-a}{3n}\left(f\left(x_0 \right)+4f\left(x_1 \right)+2f\left(x_2 \right)+\cdots+2f\left(x_{n-2} \right)+4f\left(x_{n-1} \right)+f\left(x_n \right) \right)$$

$$x_i=a+i\frac{b-a}{n}$$[/box]

We are given $a=0$ and $b=4$...and so let's begin with the first case $S_4$.

i) $n=4$.

With this value for $n$, we find that $x_i=i$. And so:

$$S_4=\frac{1}{3}\left(f(0)+4f(1)+2f(2)+4f(3)+f(4)\right)=\frac{1}{3}(0+4(-5)+2(32)+4(512)+2560)=\frac{4652}{3}=1550.\overline{6}$$

Can you proceed for the other values of $n$?
 
$$I_{35 }= \int_0^4 3x^5-8x^3\,dx=1536=S_n$$
$$S_n=\frac{b-a}{3n}\left(f\left(x_0 \right)+4f\left(x_1 \right)+2f\left(x_2 \right)+\cdots+2f\left(x_{n-2} \right)+4f\left(x_{n-1} \right)+f\left(x_n \right) \right)$$$$x_i=a+i\frac{b-a}{n}$$

$\displaystyle a=0 \ \ b=4$

i) $\displaystyle n=4 \ \ x_i=i$

$\displaystyle
S_4=\frac{1}{3}\left(f(0)+4f(1)+2f(2)+4f(3)+f(4)\right)=\frac{1}{3}(0+4(-5)+2(32)+4(512)+2560)=\frac{4652}{3}=1550.\overline{6}$
---------------------------------
ii) $\displaystyle n=8 \ \ x_i=0+i\frac{4-0}{8} =\frac{i}{2}$

$\displaystyle
S_8=\frac{1}{6}
\left[
f(0)+4f\left(\frac{1}{2}\right)
+2f\left(\frac{2}{2}\right)
+4f\left(\frac{3}{2}\right)
+2f\left(\frac{4}{2}\right)
+4f\left(\frac{5}{2}\right)
+2f\left(\frac{6}{2}\right)
+4f\left(\frac{7}{2}\right)
+f\left(\frac{8}{2}\right)
\right]\approx 1537$

Ill stop here since the $n=16$ and $n=32$ would be done the same way
☕
 
Last edited:
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K