MHB Can the Derivative of the Function $xe^x\csc{x}$ Be Solved Using the Chain Rule?

Click For Summary
The discussion focuses on differentiating the function \(xe^x\csc{x}\). The initial attempt at differentiation incorrectly applies the chain rule instead of the product rule. Participants clarify that the function involves three components, necessitating the extended product rule for accurate differentiation. The correct derivative is expressed as \(f'(x) = e^x\csc{x}(1 + x - x\cot{x})\). The conversation emphasizes the importance of recognizing multiple functions when applying differentiation rules.
Petrus
Messages
702
Reaction score
0
Hello,
I got A problem i got hard with solving i am going to derivate/defferentiate $xe^x\csc{x}$ and what i think how you derivate it and get $f('x)=(x+1)e^x-xe^x\csc{x} \cot x$

edit: i use chain rule twice first on \(xe^x\) and then on the function. Hope you guys understand how i am thinking.
 
Last edited by a moderator:
Physics news on Phys.org
Petrus said:
Hello,
I got A problem i got hard with solving i am going to derivate/defferentiate $xe^xcscx$ and what i think how you derivate it and get $f('x)=(x+1)e^x-xe^xcscxcotx$

edit: i use chain rule twice first on xe^x and then on the function. Hope you guys understand how i am thinking.

What I undestand is that You have to solve the differential equation...

$\displaystyle f^{\ '}(x) = e^{x}\ (1+ x - x\ \csc x\ \cot x)$ (1)

... isn't it?...

Kind regards

$\chi$ $\sigma$
 
Petrus said:
Hello,
I got A problem i got hard with solving i am going to derivate/defferentiate $xe^xcscx$ and what i think how you derivate it and get $f('x)=(x+1)e^x-xe^xcscxcotx$

edit: i use chain rule twice first on xe^x and then on the function. Hope you guys understand how i am thinking.

Hi Petrus. :)

You are using the product rule and not the chain rule.
$$(u\cdot v)' = u' \cdot v + u \cdot v'$$
What you have is almost correct!
There is something missing though.

You'd get:
$$(x e^x \csc x)' = (x e^x)' \cdot \boxed{\csc x} + x e^x \cdot (\csc x)'$$
Where did you leave the $\boxed{\csc x}$ in the first term?
 
Last edited:
Hello, Petrus!

Differentiate $y \:=\:xe^x\csc x$

I got: $y'\:=\: (x+1)e^x-xe^x\csc x\cot x$ . . . . not quite
$\text{We have the product of }three\text{ functions: }\:y \:=\:\underbrace{x}_f\cdot \underbrace{e^x}_g\cdot \underbrace{\csc x}_h$

$\text{There is an Extended Product Rule . . .}$

. . $\text{If }\,y \:=\:f(x)\!\cdot\!g(x)\!\cdot\!h(x)$

. . $\text{then: }\,y' \:=\:f'(x)\!\cdot\!g(x)\!\cdot\!h(x) + f(x)\!\cdot\!g'(x)\!\cdot\!h(x) + f(x)\!\cdot\!g(x)\!\cdot\!h'(x)$$\text{Therefore: }\:y' \;=\;1\!\cdot\!e^x\!\cdot\!\csc x + x\!\cdot\!e^x\!\cdot\!\csc x + x\!\cdot\!e^x\!\cdot\!(\text{-}\csc x\cot x)$

. . . . . . . .$y' \;=\;e^x\csc x + xe^x\csc x - xe^x\csc x\cot x$

. . . . . . . .$y' \;=\;e^x\csc x(1 + x - x\cot x)$
 
Thanks for all help. Sorry i did forget to write cscx
$f('x)=(x+1)ecscx-xe^xcscxcotx$
 
Last edited:
Use the backslash for a command for a trig function, followed by parentheses and the argument, like this:
Code:
$ \cos( \theta)$
yields $ \cos( \theta)$. It looks much better.
 
soroban said:
Hello, Petrus!


$\text{We have the product of }three\text{ functions: }\:y \:=\:\underbrace{x}_f\cdot \underbrace{e^x}_g\cdot \underbrace{\csc x}_h$

$\text{There is an Extended Product Rule . . .}$

. . $\text{If }\,y \:=\:f(x)\!\cdot\!g(x)\!\cdot\!h(x)$

. . $\text{then: }\,y' \:=\:f'(x)\!\cdot\!g(x)\!\cdot\!h(x) + f(x)\!\cdot\!g'(x)\!\cdot\!h(x) + f(x)\!\cdot\!g(x)\!\cdot\!h'(x)$$\text{Therefore: }\:y' \;=\;1\!\cdot\!e^x\!\cdot\!\csc x + x\!\cdot\!e^x\!\cdot\!\csc x + x\!\cdot\!e^x\!\cdot\!(\text{-}\csc x\cot x)$

. . . . . . . .$y' \;=\;e^x\csc x + xe^x\csc x - xe^x\csc x\cot x$

. . . . . . . .$y' \;=\;e^x\csc x(1 + x - x\cot x)$
Hello Soroban,
I wanted to say i am really proud that you told me that! That is something really good to know that I never thought about. May I ask is that something should figure out by myself? I honestly just thought about with two functions! I say it again THANKS for sharing that idé
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
606
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K