Can the Derivative of the Function $xe^x\csc{x}$ Be Solved Using the Chain Rule?

  • Context: MHB 
  • Thread starter Thread starter Petrus
  • Start date Start date
  • Tags Tags
    Derivative Function
Click For Summary
SUMMARY

The derivative of the function \(xe^x\csc{x}\) can be accurately calculated using the Extended Product Rule, which accounts for the differentiation of three functions: \(x\), \(e^x\), and \(\csc{x}\). The correct derivative is given by \(f'(x) = e^x\csc{x}(1 + x - x\cot{x})\). The discussion highlights the importance of correctly applying differentiation rules, specifically distinguishing between the Product Rule and the Chain Rule. Participants emphasized the necessity of including all components in the differentiation process.

PREREQUISITES
  • Understanding of the Extended Product Rule in calculus
  • Familiarity with differentiation of exponential functions
  • Knowledge of trigonometric functions and their derivatives
  • Ability to apply the Chain Rule in calculus
NEXT STEPS
  • Study the Extended Product Rule in detail
  • Practice differentiating functions involving trigonometric and exponential components
  • Explore examples of using the Chain Rule in conjunction with the Product Rule
  • Review common mistakes in differentiation to avoid errors in calculations
USEFUL FOR

Students and educators in calculus, mathematicians focusing on differentiation techniques, and anyone looking to improve their understanding of advanced differentiation methods.

Petrus
Messages
702
Reaction score
0
Hello,
I got A problem i got hard with solving i am going to derivate/defferentiate $xe^x\csc{x}$ and what i think how you derivate it and get $f('x)=(x+1)e^x-xe^x\csc{x} \cot x$

edit: i use chain rule twice first on \(xe^x\) and then on the function. Hope you guys understand how i am thinking.
 
Last edited by a moderator:
Physics news on Phys.org
Petrus said:
Hello,
I got A problem i got hard with solving i am going to derivate/defferentiate $xe^xcscx$ and what i think how you derivate it and get $f('x)=(x+1)e^x-xe^xcscxcotx$

edit: i use chain rule twice first on xe^x and then on the function. Hope you guys understand how i am thinking.

What I undestand is that You have to solve the differential equation...

$\displaystyle f^{\ '}(x) = e^{x}\ (1+ x - x\ \csc x\ \cot x)$ (1)

... isn't it?...

Kind regards

$\chi$ $\sigma$
 
Petrus said:
Hello,
I got A problem i got hard with solving i am going to derivate/defferentiate $xe^xcscx$ and what i think how you derivate it and get $f('x)=(x+1)e^x-xe^xcscxcotx$

edit: i use chain rule twice first on xe^x and then on the function. Hope you guys understand how i am thinking.

Hi Petrus. :)

You are using the product rule and not the chain rule.
$$(u\cdot v)' = u' \cdot v + u \cdot v'$$
What you have is almost correct!
There is something missing though.

You'd get:
$$(x e^x \csc x)' = (x e^x)' \cdot \boxed{\csc x} + x e^x \cdot (\csc x)'$$
Where did you leave the $\boxed{\csc x}$ in the first term?
 
Last edited:
Hello, Petrus!

Differentiate $y \:=\:xe^x\csc x$

I got: $y'\:=\: (x+1)e^x-xe^x\csc x\cot x$ . . . . not quite
$\text{We have the product of }three\text{ functions: }\:y \:=\:\underbrace{x}_f\cdot \underbrace{e^x}_g\cdot \underbrace{\csc x}_h$

$\text{There is an Extended Product Rule . . .}$

. . $\text{If }\,y \:=\:f(x)\!\cdot\!g(x)\!\cdot\!h(x)$

. . $\text{then: }\,y' \:=\:f'(x)\!\cdot\!g(x)\!\cdot\!h(x) + f(x)\!\cdot\!g'(x)\!\cdot\!h(x) + f(x)\!\cdot\!g(x)\!\cdot\!h'(x)$$\text{Therefore: }\:y' \;=\;1\!\cdot\!e^x\!\cdot\!\csc x + x\!\cdot\!e^x\!\cdot\!\csc x + x\!\cdot\!e^x\!\cdot\!(\text{-}\csc x\cot x)$

. . . . . . . .$y' \;=\;e^x\csc x + xe^x\csc x - xe^x\csc x\cot x$

. . . . . . . .$y' \;=\;e^x\csc x(1 + x - x\cot x)$
 
Thanks for all help. Sorry i did forget to write cscx
$f('x)=(x+1)ecscx-xe^xcscxcotx$
 
Last edited:
Use the backslash for a command for a trig function, followed by parentheses and the argument, like this:
Code:
$ \cos( \theta)$
yields $ \cos( \theta)$. It looks much better.
 
soroban said:
Hello, Petrus!


$\text{We have the product of }three\text{ functions: }\:y \:=\:\underbrace{x}_f\cdot \underbrace{e^x}_g\cdot \underbrace{\csc x}_h$

$\text{There is an Extended Product Rule . . .}$

. . $\text{If }\,y \:=\:f(x)\!\cdot\!g(x)\!\cdot\!h(x)$

. . $\text{then: }\,y' \:=\:f'(x)\!\cdot\!g(x)\!\cdot\!h(x) + f(x)\!\cdot\!g'(x)\!\cdot\!h(x) + f(x)\!\cdot\!g(x)\!\cdot\!h'(x)$$\text{Therefore: }\:y' \;=\;1\!\cdot\!e^x\!\cdot\!\csc x + x\!\cdot\!e^x\!\cdot\!\csc x + x\!\cdot\!e^x\!\cdot\!(\text{-}\csc x\cot x)$

. . . . . . . .$y' \;=\;e^x\csc x + xe^x\csc x - xe^x\csc x\cot x$

. . . . . . . .$y' \;=\;e^x\csc x(1 + x - x\cot x)$
Hello Soroban,
I wanted to say i am really proud that you told me that! That is something really good to know that I never thought about. May I ask is that something should figure out by myself? I honestly just thought about with two functions! I say it again THANKS for sharing that idé
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
914
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K