Can the Derivative of the Function $xe^x\csc{x}$ Be Solved Using the Chain Rule?

  • Context: MHB 
  • Thread starter Thread starter Petrus
  • Start date Start date
  • Tags Tags
    Derivative Function
Click For Summary

Discussion Overview

The discussion revolves around the differentiation of the function \(xe^x\csc{x}\). Participants explore the application of the chain rule and product rule in calculating the derivative, sharing their approaches and interpretations of the rules involved.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant suggests that the derivative can be expressed as \(f'(x)=(x+1)e^x-xe^x\csc{x} \cot{x}\), using the chain rule twice.
  • Another participant points out that the product rule is necessary for differentiating the product of three functions, providing the extended product rule formula.
  • A later reply confirms the use of the product rule and provides a detailed breakdown of the differentiation process, leading to the expression \(y' = e^x\csc{x}(1 + x - x\cot{x})\).
  • Some participants express uncertainty about the correct application of the chain rule versus the product rule, with one participant acknowledging a misunderstanding in their initial approach.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the best method for differentiation, with multiple views on the application of the chain rule and product rule remaining evident throughout the discussion.

Contextual Notes

Some participants mention missing elements in their calculations and express uncertainty about the steps involved in applying the differentiation rules correctly.

Who May Find This Useful

This discussion may be useful for students and individuals interested in calculus, particularly those looking to understand the differentiation of products of functions and the application of differentiation rules.

Petrus
Messages
702
Reaction score
0
Hello,
I got A problem i got hard with solving i am going to derivate/defferentiate $xe^x\csc{x}$ and what i think how you derivate it and get $f('x)=(x+1)e^x-xe^x\csc{x} \cot x$

edit: i use chain rule twice first on \(xe^x\) and then on the function. Hope you guys understand how i am thinking.
 
Last edited by a moderator:
Physics news on Phys.org
Petrus said:
Hello,
I got A problem i got hard with solving i am going to derivate/defferentiate $xe^xcscx$ and what i think how you derivate it and get $f('x)=(x+1)e^x-xe^xcscxcotx$

edit: i use chain rule twice first on xe^x and then on the function. Hope you guys understand how i am thinking.

What I undestand is that You have to solve the differential equation...

$\displaystyle f^{\ '}(x) = e^{x}\ (1+ x - x\ \csc x\ \cot x)$ (1)

... isn't it?...

Kind regards

$\chi$ $\sigma$
 
Petrus said:
Hello,
I got A problem i got hard with solving i am going to derivate/defferentiate $xe^xcscx$ and what i think how you derivate it and get $f('x)=(x+1)e^x-xe^xcscxcotx$

edit: i use chain rule twice first on xe^x and then on the function. Hope you guys understand how i am thinking.

Hi Petrus. :)

You are using the product rule and not the chain rule.
$$(u\cdot v)' = u' \cdot v + u \cdot v'$$
What you have is almost correct!
There is something missing though.

You'd get:
$$(x e^x \csc x)' = (x e^x)' \cdot \boxed{\csc x} + x e^x \cdot (\csc x)'$$
Where did you leave the $\boxed{\csc x}$ in the first term?
 
Last edited:
Hello, Petrus!

Differentiate $y \:=\:xe^x\csc x$

I got: $y'\:=\: (x+1)e^x-xe^x\csc x\cot x$ . . . . not quite
$\text{We have the product of }three\text{ functions: }\:y \:=\:\underbrace{x}_f\cdot \underbrace{e^x}_g\cdot \underbrace{\csc x}_h$

$\text{There is an Extended Product Rule . . .}$

. . $\text{If }\,y \:=\:f(x)\!\cdot\!g(x)\!\cdot\!h(x)$

. . $\text{then: }\,y' \:=\:f'(x)\!\cdot\!g(x)\!\cdot\!h(x) + f(x)\!\cdot\!g'(x)\!\cdot\!h(x) + f(x)\!\cdot\!g(x)\!\cdot\!h'(x)$$\text{Therefore: }\:y' \;=\;1\!\cdot\!e^x\!\cdot\!\csc x + x\!\cdot\!e^x\!\cdot\!\csc x + x\!\cdot\!e^x\!\cdot\!(\text{-}\csc x\cot x)$

. . . . . . . .$y' \;=\;e^x\csc x + xe^x\csc x - xe^x\csc x\cot x$

. . . . . . . .$y' \;=\;e^x\csc x(1 + x - x\cot x)$
 
Thanks for all help. Sorry i did forget to write cscx
$f('x)=(x+1)ecscx-xe^xcscxcotx$
 
Last edited:
Use the backslash for a command for a trig function, followed by parentheses and the argument, like this:
Code:
$ \cos( \theta)$
yields $ \cos( \theta)$. It looks much better.
 
soroban said:
Hello, Petrus!


$\text{We have the product of }three\text{ functions: }\:y \:=\:\underbrace{x}_f\cdot \underbrace{e^x}_g\cdot \underbrace{\csc x}_h$

$\text{There is an Extended Product Rule . . .}$

. . $\text{If }\,y \:=\:f(x)\!\cdot\!g(x)\!\cdot\!h(x)$

. . $\text{then: }\,y' \:=\:f'(x)\!\cdot\!g(x)\!\cdot\!h(x) + f(x)\!\cdot\!g'(x)\!\cdot\!h(x) + f(x)\!\cdot\!g(x)\!\cdot\!h'(x)$$\text{Therefore: }\:y' \;=\;1\!\cdot\!e^x\!\cdot\!\csc x + x\!\cdot\!e^x\!\cdot\!\csc x + x\!\cdot\!e^x\!\cdot\!(\text{-}\csc x\cot x)$

. . . . . . . .$y' \;=\;e^x\csc x + xe^x\csc x - xe^x\csc x\cot x$

. . . . . . . .$y' \;=\;e^x\csc x(1 + x - x\cot x)$
Hello Soroban,
I wanted to say i am really proud that you told me that! That is something really good to know that I never thought about. May I ask is that something should figure out by myself? I honestly just thought about with two functions! I say it again THANKS for sharing that idé
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K