MHB Can the exponential integral $\int e^{x^2}dx$ be evaluated exactly?

Click For Summary
The integral $\int e^{x^2}dx$ does not have a closed form solution in terms of elementary functions. It can be expressed using the Error function, specifically through the relationship with the imaginary Error function $\text{erfi}(x)$. A series solution can be derived using the power series representation of $e^{x^2}$. Additionally, while $\int e^{x^2}dx$ lacks an elementary antiderivative, the related Gaussian function $\int e^{-x^2}dx$ has a well-known exact integral over the entire real line, which equals $\sqrt{\pi}$. Thus, the integral of $e^{x^2}$ remains an important topic in mathematical analysis.
mathworker
Messages
110
Reaction score
0
I am trying to evaluate the following integral. Any help would be appreciated.
$$\int e^{x^2}dx$$
i tried the following,
$$x^2=t$$
$$2xdx=dt$$
$$\int\frac{e^t}{2\sqrt{t}}dt$$
i tried doing by parts but it didn't work
 
Physics news on Phys.org
Re: an exponential integral

Unfortunately this integral has no closed form , we can define the integral in terms of the Error function

Let the following

$$\int^x_0 e^{t^2} \, dt $$

Now use the sub $$t=iu $$

$$ i\int^{-ix }_0 e^{-u^2} \, du = i \frac{\sqrt{\pi}}{2}\, \text{erf}(-ix) =- i \frac{\sqrt{\pi}}{2}\, \text{erf}(ix) = \frac{\sqrt{\pi}}{2} \, \text{erfi}(x) $$
 
Re: an exponential integral

I agree with ZaidAlyafey. If you want, you can try to show that differentiating $\frac{1}{2} \sqrt{\pi} \text{erfi}(x)$ gives $e^{x^2}$. To do this, use the power series representation of $\text{erfi}(x)$. Differentiate using the properties of derivatives, and equate it to the power series of $e^{x^2}$ :)

That would be a valid proof thanks to the FTC (somewhat uninsightful, though, since $\text{erf}(x)$ and variants are defined in terms of the Gaussian integral).​
 
Re: an exponential integral

What is so nice about the Error function is the following properties

  • $$\text{erf}(\bar{z}) = \overline { \text{erf}(z) }\\$$
  • $$\text{erf}(-z) = - \text{erf(z) }$$

where the bar represents the complex conjugate .
 
Re: an exponential integral

mathworker said:
how to find the following integral,help would be appreciated
$$\int e^{x^2}dx$$
i tried,
$$x^2=t$$
$$2xdx=dt$$
$$\int\frac{e^t}{2\sqrt{t}}dt$$
i tried doing by parts but it didn't work

It doesn't have a closed form solution in terms of the elementary functions, but if you want, you can get a series solution.

[math]\displaystyle \begin{align*} e^X &= \sum_{n = 0}^{\infty} { \frac{X^n}{n!} } \\ \textrm{ so } e^{x^2} &= \sum_{n = 0}^{\infty} { \frac{\left( x^2 \right) ^n }{n!} } \\ &= \sum_{n = 0}^{\infty} { \frac{x^{2n}}{n!} } \\ \int{ e^{x^2}\,dx} &= \int{ \sum_{n = 0}^{\infty} {\frac{x^{2n}}{n!}} \, dx } \\ &= \sum_{n = 0}^{\infty} { \frac{x^{2n+1}}{\left( 2n + 1 \right) \, n!} } + C \end{align*}[/math]
 
Just because the OP might find this interesting, even though this function does not have an elementary antiderivative, a similar function, the Gaussian Function [math]\displaystyle \begin{align*} e^{-x^2} \end{align*}[/math] also does not have an elementary antiderivative, and so in general can not be exactly integrated over two values, but DOES have an exact definite integral over the entire real number line, [math]\displaystyle \begin{align*} \int_{-\infty}^{\infty}{e^{-x^2}\,dx} = \sqrt{\pi} \end{align*}[/math]

Proof: Consider integrating over the real plane [math]\displaystyle \begin{align*} \int{ \int_{\mathbf{R}^2}{e^{-\left( x^2 + y^2 \right) }} \, dA } \end{align*}[/math]. If we convert to polars, since we are integrating over the entire plane, the radii can extend out indefinitely and all angles can be swept out. So

[math]\displaystyle \begin{align*} \int{ \int_{\mathbf{R}^2} {e^{-\left( x^2 + y^2 \right) } }\,dA } &= \int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{ e^{-\left( x^2 + y^2 \right) } \,dx}\,dy} \\ &= \int_0^{2\pi}{\int_0^{\infty}{e^{-r^2}\,r\,dr}\,d\theta} \\ &= -\frac{1}{2}\int_0^{2\pi}{\int_0^{\infty}{e^{-r^2} \left( -2r \right) \, dr}\,d\theta} \\ &= -\frac{1}{2}\int_0^{2\pi}{\int_0^{-\infty}{e^u\,du}\,d\theta} \textrm{ after substituting } u = -r^2 \\ &= \frac{1}{2}\int_0^{2\pi}{\int_{-\infty}^0{e^u\,du}\,d\theta} \\ &= \frac{1}{2}\int_0^{2\pi}{\lim_{\epsilon \to -\infty}\int_{\epsilon}^0{e^u\,du}\,d\theta} \\ &= \frac{1}{2}\int_0^{2\pi}{\lim_{\epsilon \to -\infty} \left[ e^u \right]_{\epsilon}^0 \,d\theta} \\ &= \frac{1}{2}\int_0^{2\pi}{e^0 - \lim_{\epsilon \to -\infty}e^{\epsilon}\,d\theta} \\ &= \frac{1}{2}\int_0^{2\pi}{1 - 0\,d\theta} \\ &= \frac{1}{2}\int_0^{2\pi}{1\,d\theta} \\ &= \frac{1}{2} \left[ \theta \right] _0^{2\pi} \\ &= \frac{1}{2} \left( 2\pi - 0 \right) \\ &= \frac{1}{2} \left( 2\pi \right) \\ &= \pi \end{align*}[/math]

But if we attempt to integrate using Cartesians

[math]\displaystyle \begin{align*} \int{\int_{\mathbf{R}^2}{e^{-\left( x^2 + y^2 \right) }}\,dA} &= \int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{e^{-\left( x^2 + y^2 \right) }\,dx}\,dy} \\ &= \int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{e^{-x^2 - y^2}\,dx}\,dy} \\ &= \int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{e^{-x^2}e^{-y^2}\,dx}\,dy} \\ &= \left( \int_{-\infty}^{\infty}{e^{-x^2}\,dx} \right) \left( \int_{-\infty}^{\infty}{e^{-y^2}} \, dy \right) \\ &= \left( \int_{-\infty}^{\infty}{e^{-x^2}\,dx} \right) ^2 \textrm{ as the two integrals are identical and so are numerically equal} \end{align*}[/math]

Equating the two results, we find

[math]\displaystyle \begin{align*} \left( \int_{-\infty}^{\infty}{e^{-x^2}\,dx} \right) ^2 &= \pi \\ \int_{-\infty}^{\infty}{e^{-x^2}\,dx} &= \sqrt{\pi} \end{align*}[/math]

Q.E.D.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K