Just because the OP might find this interesting, even though this function does not have an elementary antiderivative, a similar function, the Gaussian Function [math]\displaystyle \begin{align*} e^{-x^2} \end{align*}[/math] also does not have an elementary antiderivative, and so in general can not be exactly integrated over two values, but DOES have an exact definite integral over the entire real number line, [math]\displaystyle \begin{align*} \int_{-\infty}^{\infty}{e^{-x^2}\,dx} = \sqrt{\pi} \end{align*}[/math]
Proof: Consider integrating over the real plane [math]\displaystyle \begin{align*} \int{ \int_{\mathbf{R}^2}{e^{-\left( x^2 + y^2 \right) }} \, dA } \end{align*}[/math]. If we convert to polars, since we are integrating over the entire plane, the radii can extend out indefinitely and all angles can be swept out. So
[math]\displaystyle \begin{align*} \int{ \int_{\mathbf{R}^2} {e^{-\left( x^2 + y^2 \right) } }\,dA } &= \int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{ e^{-\left( x^2 + y^2 \right) } \,dx}\,dy} \\ &= \int_0^{2\pi}{\int_0^{\infty}{e^{-r^2}\,r\,dr}\,d\theta} \\ &= -\frac{1}{2}\int_0^{2\pi}{\int_0^{\infty}{e^{-r^2} \left( -2r \right) \, dr}\,d\theta} \\ &= -\frac{1}{2}\int_0^{2\pi}{\int_0^{-\infty}{e^u\,du}\,d\theta} \textrm{ after substituting } u = -r^2 \\ &= \frac{1}{2}\int_0^{2\pi}{\int_{-\infty}^0{e^u\,du}\,d\theta} \\ &= \frac{1}{2}\int_0^{2\pi}{\lim_{\epsilon \to -\infty}\int_{\epsilon}^0{e^u\,du}\,d\theta} \\ &= \frac{1}{2}\int_0^{2\pi}{\lim_{\epsilon \to -\infty} \left[ e^u \right]_{\epsilon}^0 \,d\theta} \\ &= \frac{1}{2}\int_0^{2\pi}{e^0 - \lim_{\epsilon \to -\infty}e^{\epsilon}\,d\theta} \\ &= \frac{1}{2}\int_0^{2\pi}{1 - 0\,d\theta} \\ &= \frac{1}{2}\int_0^{2\pi}{1\,d\theta} \\ &= \frac{1}{2} \left[ \theta \right] _0^{2\pi} \\ &= \frac{1}{2} \left( 2\pi - 0 \right) \\ &= \frac{1}{2} \left( 2\pi \right) \\ &= \pi \end{align*}[/math]
But if we attempt to integrate using Cartesians
[math]\displaystyle \begin{align*} \int{\int_{\mathbf{R}^2}{e^{-\left( x^2 + y^2 \right) }}\,dA} &= \int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{e^{-\left( x^2 + y^2 \right) }\,dx}\,dy} \\ &= \int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{e^{-x^2 - y^2}\,dx}\,dy} \\ &= \int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{e^{-x^2}e^{-y^2}\,dx}\,dy} \\ &= \left( \int_{-\infty}^{\infty}{e^{-x^2}\,dx} \right) \left( \int_{-\infty}^{\infty}{e^{-y^2}} \, dy \right) \\ &= \left( \int_{-\infty}^{\infty}{e^{-x^2}\,dx} \right) ^2 \textrm{ as the two integrals are identical and so are numerically equal} \end{align*}[/math]
Equating the two results, we find
[math]\displaystyle \begin{align*} \left( \int_{-\infty}^{\infty}{e^{-x^2}\,dx} \right) ^2 &= \pi \\ \int_{-\infty}^{\infty}{e^{-x^2}\,dx} &= \sqrt{\pi} \end{align*}[/math]
Q.E.D.