Can the Least Squares Method be expressed as a convolution?

Daniel Petka
Messages
147
Reaction score
16
Homework Statement
Consider a laser line position estimation by fitting using the Least Square Method (LSM) and prove (or disprove) that it can be considered as a convolution with some function and finding the center by looking for the maximum (zero‐crossing by the derivative). What is the smoothing function?

The Least Square Method (LSM) is defined as:
$$\sum_i[S(x_i)-F(x_i,;a,b,...)]^2=min,$$
where the fitting function is:
$$F(x;y_0,A,x_0,w)=y_0+A\cdot g(x-x_c,w)$$

The fit program will adjust all parameters, but we
are interested only for ##x_c##.

Hint: change sums to integrals in LSM description!
Relevant Equations
fitting function: ##F(x;y_0,A,x_0,w)=y_0+A\cdot g(x-x_c,w)##
convolution: ##f(x)=\int S(x-y)K(y)dy##
Least Squares Method: ##\sum_i[S(x_i)-F(x_i,;a,b,...)]^2=min##
1709981521836.png

I started by converting the LSM from sum to integral form:
$$f(x_c) = \sum_i[S(x_i)-F(x_i,;a,b,...)]^2 to f(x_c) = \int( S(x) - F(x-x_c)^2 dx$$

Since we are not interested in the other parameters (like offset), I assumed that they are fitted correctly and thus ignored them, turning ##F(x-x_c)## directly to ##g(x-x_c)##.

Then I expanded the binomial formula as following:
$$\int S(x)^2 - 2S(x)F(x-x_c) + g(x-x_c)^2 dx$$

And used the linearity of the integral to isolate the part of the equation that doesn't depend on x_0:
$$ f(x_c) = \int S(x)^2 dx + \int 2S(x)g(x-x_c) + g(x-x_c)^2 dx$$
Hence, we have a constant q that isn't affected by the convolution:

$$ f(x_c) = q + \int 2S(x)g(x-x_c) + g(x-x_c)^2 dx$$

The middle term is a convolution og the 2 functions. My idea was to disprove that a Kernel exists, because there is a term that doesn't depend on ##x_c##, but this logic doesn't make any sense after thinking about it. I am completely stuck at this point, since I can neither prove nor disprove that the kernel function exists. Any help would be highly appreciated!
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top