I Can the Lieb-Robinson Bound be Intuited from the Taylor Series of an Operator?

thatboi
Messages
130
Reaction score
20
Hi all,
I was wondering if there was a way to intuit the Lieb-Robinson bound from simply looking at the taylor series for an operator ##A(t) = e^{-iHt}Ae^{iHt}## where ##H## is a k-local Hamiltonian and ##A(t)## initially starts off as a single-site operator. The generic idea is that at each order of ##it##, the operator "grows" in size since it will have non-zero commutator with the local terms in ##H##. My issue though, is how to see the "light-cone" that is frequently used in discussions of this topic because for any non-zero ##t##, ##A(t)## will necessarily have contributions from all order of ##it##, so I am not sure where to draw the boundary between operator and the rest of the system that is typically drawn in the Lieb-Robinson bound.
Any advice would be appreciated.
Thanks!
 
Physics news on Phys.org
I never heard of Lieb-Robinson bound before, but after a brief googling my intuition is the following. The wave (quantum of classical) propagates with a finite velocity, approximately given by the group velocity
$$v_g=\frac{d\omega}{dk}$$
For example, for a free non-relativistic particle we have ##\omega=k^2/2m## (in units ##\hbar=1##), so
$$v_g=k/m$$
which is finite, provided that ##k## is finite. Thus, if the wave packet has vanishing contributions from infinite ##\omega## and ##k##, i.e. the wave does not have wild oscillations at arbitrarily small time and space scales, then one expects a finite speed of propagation. This is a wave analog of the fact that a classical non-relativistic particle travels with finite speed, provided that its energy and momentum are not infinite.

But that's just my intuition, I'm not certain how much is this related to the actual Lieb-Robinson bound.
 
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Back
Top