MHB Can the vectors be written as a linear combination?

Click For Summary
The discussion centers on determining whether the vectors a1, a2, and a3 are linearly dependent and if the vectors b and c can be expressed as linear combinations of them. It is established that the vectors a1, a2, and a3 are indeed linearly dependent. The Gauss elimination method shows that vector b can be expressed as a linear combination in infinitely many ways, while vector c cannot be represented as such due to a contradiction in the reduced matrix. Additionally, a suggestion is made to use column elimination for a more efficient approach in identifying independent vectors and dependencies. The conversation concludes with a positive acknowledgment of the insights shared.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the vectors $\overrightarrow{a_1}=\begin{pmatrix}1 \\ 2 \\ 3\end{pmatrix}, \overrightarrow{a_2}=\begin{pmatrix}-1 \\0 \\ 2\end{pmatrix}, \overrightarrow{a_3}=\begin{pmatrix}7 \\ 8 \\ 6\end{pmatrix}$.

I have shown that these vectors are linearly dependent:
$\begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
2 & 0 & 8\\
3 & 2 & 6
\end{matrix}\left|\begin{matrix}
0\\
0\\
0
\end{matrix}\right.\end{bmatrix}\begin{matrix}
\\
2.\text{row}-2\cdot 1.\text{row}\\
3.\text{row}-3\cdot 1.\text{row}
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
0 & 2 & -6\\
0 & 5 & -15
\end{matrix}\left|\begin{matrix}
0\\
0\\
0
\end{matrix}\right.\end{bmatrix}\begin{matrix}
\\
\\
3.\text{row}-\frac{5}{2}\cdot 2.\text{row}
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
0 & 2 & -6\\
0 & 0 & 0
\end{matrix}\left|\begin{matrix}
0\\
0\\
0
\end{matrix}\right.\end{bmatrix}$

right? (Wondering)

Can we write the vectors $\overrightarrow{b}=\begin{pmatrix}-6 \\ -4 \\ 2\end{pmatrix}$ and $\overrightarrow{c}=\begin{pmatrix}0 \\ 2 \\ 1\end{pmatrix}$ as linear combinations of the vectors $\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}$ ? (Wondering)

To check this I applied the Gauss elimination algorithm:

$\begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
2 & 0 & 8\\
3 & 2 & 6
\end{matrix}\left|\begin{matrix}
-6\\
-4\\
2
\end{matrix}\right.\end{bmatrix}\begin{matrix}
\\
2.\text{row}-2\cdot 1.\text{row}\\
3.\text{row}-3\cdot 1.\text{row}
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
0 & 2 & -6\\
0 & 5 & -15
\end{matrix}\left|\begin{matrix}
-6\\
8 \\
20
\end{matrix}\right.\end{bmatrix}\begin{matrix}
\\
\\
3.\text{row}-\frac{5}{2}\cdot 2.\text{row}
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
0 & 2 & -6\\
0 & 0 & 0
\end{matrix}\left|\begin{matrix}
-6\\
8\\
0
\end{matrix}\right.\end{bmatrix}$ $\begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
2 & 0 & 8\\
3 & 2 & 6
\end{matrix}\left|\begin{matrix}
0\\
2\\
1
\end{matrix}\right.\end{bmatrix}\begin{matrix}
\\
2.\text{row}-2\cdot 1.\text{row}\\
3.\text{row}-3\cdot 1.\text{row}
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
0 & 2 & -6\\
0 & 5 & -15
\end{matrix}\left|\begin{matrix}
0\\
2 \\
3
\end{matrix}\right.\end{bmatrix}\begin{matrix}
\\
\\
3.\text{row}-\frac{5}{2}\cdot 2.\text{row}
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
0 & 2 & -6\\
0 & 0 & 0
\end{matrix}\left|\begin{matrix}
0\\
2\\
-2
\end{matrix}\right.\end{bmatrix}$

So, in both cases the vectors $\overrightarrow{b}$ and $\overrightarrow{c}$ cannot be written as linear combinations of the vectors $\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}$.

Is everything correct? Could I improve something? (Wondering)
I have to give all the possible solutions of the linear equations system.

For the vector $\overrightarrow{b}$:

we get $2\lambda_2-6\lambda_3=8$ and $\lambda_1-\lambda_2+7\lambda_3=-6$.

Solving at the first equation for $\lambda_2$ we get $\lambda_2=4+3\lambda_3$.

From the other equation we get $\lambda_1=\lambda_2-7\lambda_3-6 =4+3\lambda_3-7\lambda_3-6=-2-4\lambda_3$.

So, are all the possible solutions of the linear equations system: $(\lambda_1, \lambda_2, \lambda_3)=(-2-4\lambda_3, 4+3\lambda_3, \lambda_3)=\lambda_3(-4, 3, 1)+(-2, 4, 0)$ ? (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
Yes, these vectors are dependent. In showing whether or not vector \vec{b} can be written as a linear combination, you arrived at a reduced matrix in which all 4 entries in the last row equal to 0. since 0x+ 0y+ 0z= 0 for any x, y, z, that shows that \vec{b} can be written as a linear combination, in infinitely many ways.

For \vec{c} you arrived at a reduce matrix with last row "0 0 0 | -2". Since 0x+ 0y+ 0z is not equal to -2 or any x, y, z, yes, \vec{c} cannot be written as a linear combination.
 
HallsofIvy said:
Yes, these vectors are dependent. In showing whether or not vector \vec{b} can be written as a linear combination, you arrived at a reduced matrix in which all 4 entries in the last row equal to 0. since 0x+ 0y+ 0z= 0 for any x, y, z, that shows that \vec{b} can be written as a linear combination, in infinitely many ways.

For \vec{c} you arrived at a reduce matrix with last row "0 0 0 | -2". Since 0x+ 0y+ 0z is not equal to -2 or any x, y, z, yes, \vec{c} cannot be written as a linear combination.

I understand! (Smile)

And are the infinitely many ways for $\vec{b}$ described as follows?

mathmari said:
For the vector $\overrightarrow{b}$:

we get $2\lambda_2-6\lambda_3=8$ and $\lambda_1-\lambda_2+7\lambda_3=-6$.

Solving at the first equation for $\lambda_2$ we get $\lambda_2=4+3\lambda_3$.

From the other equation we get $\lambda_1=\lambda_2-7\lambda_3-6 =4+3\lambda_3-7\lambda_3-6=-2-4\lambda_3$.

So, are all the possible solutions of the linear equations system: $(\lambda_1, \lambda_2, \lambda_3)=(-2-4\lambda_3, 4+3\lambda_3, \lambda_3)=\lambda_3(-4, 3, 1)+(-2, 4, 0)$ ? (Wondering)
 
Yes. Since your matrix can be row reduced a matrix with one row all 0s, this is equivalent two equations in three variables, a, b, and c. You can solve for two of the variables in terms of the third, or solve for all three in terms of a new parameter. Here you have the single parameter \lambda_3.
 
mathmari said:
Could I improve something? (Wondering)

Hey mathmari! (Smile)

I would recommend using column elimination instead of row elimination.
As a result we'll find the minimum set of independent vectors that also makes it easier to find the other dependencies. (Nerd)
 
Ah ok...

Thank you very much! (Happy)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 33 ·
2
Replies
33
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 7 ·
Replies
7
Views
1K