MHB Can this expression be factored?

  • Thread starter Thread starter mathlearn
  • Start date Start date
  • Tags Tags
    Expression
AI Thread Summary
The expression \(x^2 + 4x - 1\) cannot be factored over the rationals, but it can be factored using roots derived from the quadratic formula. The roots are \(2 \pm \sqrt{5}\), leading to the factors \((x - (2 + \sqrt{5}))(x - (2 - \sqrt{5}))\). Alternatively, completing the square reveals the expression as \((x + 2)^2 - 5\), which can also be factored as \((x + 2 + \sqrt{5})(x + 2 - \sqrt{5})\). Tools like Wolfram|Alpha can assist in verifying these factorizations. The expression can thus be factored using both methods effectively.
mathlearn
Messages
331
Reaction score
0
I was wondering whether this expression could be factored by any means

$x^2+4x-1$Many THanks :)
 
Mathematics news on Phys.org
Not over the rationals, but if you multiply out $\left(x+\sqrt{5}+2\right)\left(x-\sqrt{5}+2\right)$, I fancy you'll get your original expression back. Wolfram|Alpha is a great way to check these sorts of things. You can use the quadratic formula to get it by hand (set your quadratic equal to zero).
 
Or you could use the quadratic formula to show that $$x^2+ 4x- 1= 0$$ has roots [math]\frac{-4\pm\sqrt{4^2- 4(1)(-1)}}{2(1)}= \frac{-4\pm\sqrt{16+ 4}}{2}= \frac{-4\pm\sqrt{20}}{2}= \frac{4\pm2\sqrt{5}}{2}= 2\pm\sqrt{5}[/math] so that its factors are [math](x- 2- \sqrt{5})(x- 2+ \sqrt{5})[/math].

Or "complete the square": [math]x^2+ 4x- 1= x^2+ 4x+ 4- 4- 1= (x- 2)^2- 5= (x- 2)^2- (\sqrt{5})^2[/math], a "difference of two squares" which can be factored as a "sum and difference", [math](x- 2+ \sqrt{5})(x- 2- \sqrt{5})[/math].
([math]a^2- b^2= (a+ b)(a- b)[/math])
 
Complete The Square Method:
$x^2 + 4x - 1 $
$= x^2 + 4x + 4 - 4 - 1$
$ = (x + 2)^2 - 5$
$ = (x + 2)^2 - (\sqrt{5})^2$
$ = (x + 2 + \sqrt{5})(x + 2 - \sqrt{5})$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top