MHB Can Trig Identities be Derived from Easier Formulas?

hatelove
Messages
101
Reaction score
1
I know you can derive the double angle formulas for sin(2a) and cos(2a) from Euler's identity, but is there any way to derive the tan(2a) in a similar manner from an easier formula? What about the addition/subtraction formulas (i.e. sin(a+b), etc.)
 
Mathematics news on Phys.org
daigo said:
I know you can derive the double angle formulas for sin(2a) and cos(2a) from Euler's identity, but is there any way to derive the tan(2a) in a similar manner from an easier formula? What about the addition/subtraction formulas (i.e. sin(a+b), etc.)

Using the addition formula for tan would be the easiest: $\tan(A+B) = \frac{\tan(A)+\tan(B)}{1-\tan(A)\tan(B)}$

Alternatively you can use the fact that $\tan(ax) = \frac{\sin(ax)}{\cos(ax)}$ (where a is a constant) together with your values for sin(2a) and cos(2a).
 
Last edited:
daigo said:
I know you can derive the double angle formulas for sin(2a) and cos(2a) from Euler's identity, but is there any way to derive the tan(2a) in a similar manner from an easier formula? What about the addition/subtraction formulas (i.e. sin(a+b), etc.)

\[\tan(2a)=\frac{\sin(2a)}{\cos(2a)}=\frac{2\sin(a) \cos(a)}{\cos^2(a)-\sin^2(a)}\]

Now divide top and bottom by \(\cos^2(a)\)

CB
 
daigo said:
I know you can derive the double angle formulas for sin(2a) and cos(2a) from Euler's identity, but is there any way to derive the tan(2a) in a similar manner from an easier formula? What about the addition/subtraction formulas (i.e. sin(a+b), etc.)

In...

http://mathworld.wolfram.com/TrigonometricAdditionFormulas.html

... a purely geometric way to obtain the sine of the sum of two angles is given...

Kind regards

chi sigma
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top