MHB Can Trig Identities be Derived from Easier Formulas?

Click For Summary
The discussion explores the derivation of trigonometric identities, specifically focusing on whether the formula for tan(2a) can be derived from simpler formulas, similar to how sin(2a) and cos(2a) can be derived from Euler's identity. Participants suggest using the addition formula for tangent, which states that tan(A+B) = (tan(A) + tan(B)) / (1 - tan(A)tan(B)), as a straightforward method. Another approach discussed involves expressing tan(2a) as sin(2a)/cos(2a) and manipulating it using known values for sin(2a) and cos(2a). The conversation also touches on geometric methods for deriving sine addition formulas. Overall, the thread emphasizes the connections between different trigonometric identities and their derivations.
hatelove
Messages
101
Reaction score
1
I know you can derive the double angle formulas for sin(2a) and cos(2a) from Euler's identity, but is there any way to derive the tan(2a) in a similar manner from an easier formula? What about the addition/subtraction formulas (i.e. sin(a+b), etc.)
 
Mathematics news on Phys.org
daigo said:
I know you can derive the double angle formulas for sin(2a) and cos(2a) from Euler's identity, but is there any way to derive the tan(2a) in a similar manner from an easier formula? What about the addition/subtraction formulas (i.e. sin(a+b), etc.)

Using the addition formula for tan would be the easiest: $\tan(A+B) = \frac{\tan(A)+\tan(B)}{1-\tan(A)\tan(B)}$

Alternatively you can use the fact that $\tan(ax) = \frac{\sin(ax)}{\cos(ax)}$ (where a is a constant) together with your values for sin(2a) and cos(2a).
 
Last edited:
daigo said:
I know you can derive the double angle formulas for sin(2a) and cos(2a) from Euler's identity, but is there any way to derive the tan(2a) in a similar manner from an easier formula? What about the addition/subtraction formulas (i.e. sin(a+b), etc.)

\[\tan(2a)=\frac{\sin(2a)}{\cos(2a)}=\frac{2\sin(a) \cos(a)}{\cos^2(a)-\sin^2(a)}\]

Now divide top and bottom by \(\cos^2(a)\)

CB
 
daigo said:
I know you can derive the double angle formulas for sin(2a) and cos(2a) from Euler's identity, but is there any way to derive the tan(2a) in a similar manner from an easier formula? What about the addition/subtraction formulas (i.e. sin(a+b), etc.)

In...

http://mathworld.wolfram.com/TrigonometricAdditionFormulas.html

... a purely geometric way to obtain the sine of the sum of two angles is given...

Kind regards

chi sigma
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
32
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
15
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K