MHB Can Trig Identities be Derived from Easier Formulas?

AI Thread Summary
The discussion explores the derivation of trigonometric identities, specifically focusing on whether the formula for tan(2a) can be derived from simpler formulas, similar to how sin(2a) and cos(2a) can be derived from Euler's identity. Participants suggest using the addition formula for tangent, which states that tan(A+B) = (tan(A) + tan(B)) / (1 - tan(A)tan(B)), as a straightforward method. Another approach discussed involves expressing tan(2a) as sin(2a)/cos(2a) and manipulating it using known values for sin(2a) and cos(2a). The conversation also touches on geometric methods for deriving sine addition formulas. Overall, the thread emphasizes the connections between different trigonometric identities and their derivations.
hatelove
Messages
101
Reaction score
1
I know you can derive the double angle formulas for sin(2a) and cos(2a) from Euler's identity, but is there any way to derive the tan(2a) in a similar manner from an easier formula? What about the addition/subtraction formulas (i.e. sin(a+b), etc.)
 
Mathematics news on Phys.org
daigo said:
I know you can derive the double angle formulas for sin(2a) and cos(2a) from Euler's identity, but is there any way to derive the tan(2a) in a similar manner from an easier formula? What about the addition/subtraction formulas (i.e. sin(a+b), etc.)

Using the addition formula for tan would be the easiest: $\tan(A+B) = \frac{\tan(A)+\tan(B)}{1-\tan(A)\tan(B)}$

Alternatively you can use the fact that $\tan(ax) = \frac{\sin(ax)}{\cos(ax)}$ (where a is a constant) together with your values for sin(2a) and cos(2a).
 
Last edited:
daigo said:
I know you can derive the double angle formulas for sin(2a) and cos(2a) from Euler's identity, but is there any way to derive the tan(2a) in a similar manner from an easier formula? What about the addition/subtraction formulas (i.e. sin(a+b), etc.)

\[\tan(2a)=\frac{\sin(2a)}{\cos(2a)}=\frac{2\sin(a) \cos(a)}{\cos^2(a)-\sin^2(a)}\]

Now divide top and bottom by \(\cos^2(a)\)

CB
 
daigo said:
I know you can derive the double angle formulas for sin(2a) and cos(2a) from Euler's identity, but is there any way to derive the tan(2a) in a similar manner from an easier formula? What about the addition/subtraction formulas (i.e. sin(a+b), etc.)

In...

http://mathworld.wolfram.com/TrigonometricAdditionFormulas.html

... a purely geometric way to obtain the sine of the sum of two angles is given...

Kind regards

chi sigma
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top