Can wave particle duality be viewed at macroscopic scale ?

Click For Summary
Wave-particle duality has been primarily observed at the microscopic level, notably through phenomena like interference and the photoelectric effect. The discussion raises the question of whether this duality can be observed at a macroscopic scale, using examples such as a car to illustrate potential wave characteristics. Experimental evidence suggests that superposition can occur with larger molecules, as demonstrated with 430 atoms in an interferometer. However, the feasibility of observing wave behavior in objects heavier than the Planck mass remains uncertain, as current physics theories may not apply at that scale. The exploration of wave-particle duality at macroscopic levels continues to challenge existing scientific understanding.
shivaniits
Messages
38
Reaction score
0
can wave particle duality be viewed at macroscopic scale...??

ok so far we have discussed the wave particle duality in case of electrons of-course at microscopic level through the
1) interference phenomenon showing its wave behavior
2)photoelectric effect discussing its particle characteristics..!
but we have discussed it at only microscopic level ...can it be possible to view this phenomenon at macroscopic level ...particularly wave behavior ...! let take an example of a car how would we be proving its wave characteristics ...?
 
Physics news on Phys.org


actual experimental record 430 atoms.
http://vcq.quantum.at/-the-molecular-octopus-a-little-brother-of-schroedinger-s-cat-.5195.html[/URL]
[url]http://www.nature.com/ncomms/journal/v2/n4/full/ncomms1263.html[/url]

...In our experiment, the superposition consists of having all 430 atoms simultaneously 'in the left arm' and 'in the right arm' of our interferometer, that is, two possibilities that are macroscopically distinct. The path separation is about two orders of magnitude larger than the size of the molecules...
 
Last edited by a moderator:


Whether objects heavier than the Planck mass (about the weight of a large bacterium) have a de Broglie wavelength is theoretically unclear and experimentally unreachable; above the Planck mass a particle's Compton wavelength would be smaller than the Planck length and its own Schwarzschild radius, a scale at which current theories of physics may break down or need to be replaced by more general ones.[24]

http://en.wikipedia.org/wiki/Wave-particle_duality#Wave_behavior_of_large_objects
 
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 36 ·
2
Replies
36
Views
8K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 19 ·
Replies
19
Views
6K
  • · Replies 34 ·
2
Replies
34
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 39 ·
2
Replies
39
Views
9K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
5K