Can we somehow modify the Lagrange form to get a tighter bound? (Curious)

Click For Summary

Discussion Overview

The discussion revolves around the estimation of the mathematical constant \( e \) using the series representation \( \sum_{k=0}^{\infty}\frac{1}{k!} \) and the limit definition \( e:=\lim_{n\rightarrow \infty}\left (1+\frac{1}{n}\right )^n \). Participants explore the use of the binomial theorem to compare the partial sums of the series with the limit definition, aiming to establish bounds for the difference \( e - s_n \) where \( s_n \) is the \( n \)-th partial sum.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants propose using the binomial theorem to derive bounds for \( s_n \) and \( \left(1+\frac{1}{n}\right)^n \).
  • Others express uncertainty about the effectiveness of the proposed upper bound, suggesting that \( s_n \) converges faster than \( \left(1+\frac{1}{n}\right)^n \).
  • There is a discussion about calculating \( s_n \) and \( \left(1+\frac{1}{n}\right)^n \) for specific values of \( n \) (10 and 100) with high precision, raising concerns about rounding errors in calculations.
  • Participants note that the difference \( e - s_n \) can be expressed as \( \sum_{k=n+1}^{\infty}\frac{1}{k!} \), which is positive, indicating \( 0 < e - s_n \).
  • There is a request for hints on how to establish an upper bound for \( e - s_n \), indicating ongoing exploration of the topic.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the effectiveness of the proposed methods for establishing an upper bound. There are competing views on the convergence rates of \( s_n \) and \( \left(1+\frac{1}{n}\right)^n \), and the discussion remains unresolved regarding the best approach to find a tighter bound.

Contextual Notes

Participants express concerns about potential rounding errors when calculating small terms in the series, which may affect the accuracy of their results. There is also an acknowledgment of the need for careful consideration of convergence rates in their arguments.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I am looking at the following:
  1. Show that $\displaystyle{\text{exp}(1)=\sum_{k=0}^{\infty}\frac{1}{k!}=e}$ with $\displaystyle{e:=\lim_{n\rightarrow \infty}\left (1+\frac{1}{n}\right )^n}$.

    Hint: Use the binomial theorem and compare with the partial sum $s_n$ of the series $\sum_{k=0}^{\infty}\frac{1}{k!}$.
  2. Calculate $s_n$ and $\left (1+\frac{1}{n}\right )^n$ for $n=10$ and $n=100$ with exactly $12$ decimal places and compare with $e$.
  3. Show that the differenz of the $n$-th parial sum of the series $\sum_{k=0}^{\infty}\frac{1}{k!}$ can be estimated to $e$ by $0<e-s_n<\frac{1}{n!n}$.
I have done the following:
  1. We have the partial sum $$s_n=\sum_{k=0}^n\frac{1}{k!}$$

    By the binomial theorem we have that $$\left (1+\frac{1}{n}\right )^n=\sum_{k=0}^n\binom{n}{k}\frac{1}{n^k}$$

    We have that \begin{align*}\binom{n}{k}\frac{1}{n^k}&=\frac{n!}{k!\cdot (n-k)!}\cdot \frac{1}{n^k}\\ & =\frac{(n-k+1) \cdot \ldots \cdot (n-1) \cdot n}{k!}\cdot \frac{1}{n^k}\\ & =\frac{1}{k!}\cdot \frac{(n-k+1)\cdot \ldots \cdot (n-1) \cdot n}{n^k}\\ & =\frac{1}{k!}\cdot \frac{n-k+1}{n}\cdot \ldots \cdot \frac{n-1}{n}\cdot \frac{n}{n}\\ & =\frac{1}{k!}\cdot \left (1-\frac{k-1}{n}\right )\cdot \ldots \cdot \left (1-\frac{1}{n}\right )\cdot 1\\ & \leq \frac{1}{k!}\end{align*}We want to find also an upper bound.

    By the binomial theorem we have that $$\left (1+\frac{1}{n+1}\right )^{n+1}=\sum_{k=0}^{n+1}\binom{n+1}{k}\frac{1}{(n+1)^k}$$

    \begin{align*}\binom{n+1}{k}\frac{1}{(n+1)^k}&=\frac{(n+1)!}{k!\cdot ([n+1]-k)!}\cdot \frac{1}{(n+1)^k} \\ & =\frac{([n+1]-k+1)\cdot \ldots \cdot n\cdot (n+1)}{k!}\cdot \frac{1}{(n+1)^k} \\ & \geq \frac{([n+1]-k+1)\cdot \ldots \cdot ([n+1]-k+1)\cdot ([n+1]-k+1)}{k!}\cdot \frac{1}{(n+1)^k} \\ & =\frac{1}{k!}\cdot \frac{([n+1]-k+1)\cdot \ldots \cdot ([n+1]-k+1)\cdot ([n+1]-k+1)}{(n+1)^k}\\ & =\frac{1}{k!}\cdot \frac{[n+1]-k+1}{n+1}\cdot \ldots \cdot \frac{[n+1]-k+1}{n+1}\cdot \frac{[n+1]-k+1}{n+1} \end{align*}

    How can we continue? (Wondering) So, we will get \begin{align*}&\binom{n}{k}\frac{1}{n^k}\leq \frac{1}{k!}\leq \binom{n+1}{k}\frac{1}{(n+1)^k} \\ & \Rightarrow \sum_{k=0}^n\binom{n}{k}\frac{1}{n^k}\leq \sum_{k=0}^n\frac{1}{k!}\leq \sum_{k=0}^n \binom{n+1}{k}\frac{1}{(n+1)^k}\leq \sum_{k=0}^{n+1} \binom{n+1}{k}\frac{1}{(n+1)^k} \\ & \Rightarrow \left (1+\frac{1}{n}\right )^n \leq s_n \leq \left (1+\frac{1}{n+1}\right )^{n+1} \\ & \Rightarrow \lim_{n\rightarrow \infty}\left (1+\frac{1}{n}\right )^n \leq \lim_{n\rightarrow \infty}s_n \leq \lim_{n\rightarrow \infty} \left (1+\frac{1}{n+1}\right )^{n+1} \\ & \Rightarrow e \leq \sum_{k=0}^{\infty}\frac{1}{k!} \leq e \\ & \Rightarrow \sum_{k=0}^{\infty}\frac{1}{k!}=e\end{align*}

    Is everything correct? (Wondering)
  2. Do we calculate $s_n$ and $\left (1+\frac{1}{n}\right )^n$ for $n=10$ and $n=100$ with exactly $12$ decimal places with the calculator, or is it meant to do something else here? (Wondering)
  3. We have that
    $$e-s_n=\sum_{k=0}^{\infty}\frac{1}{k!}-\sum_{k=0}^n\frac{1}{k!}=\sum_{k=n+1}^{\infty}\frac{1}{k!}$$
    We have that $\sum_{k=n+1}^{\infty}\frac{1}{k!}$ is popsitive, sinve every term is positiv. So, $0<e-s_n$.

    Could you give me a hint how we could get the upper bound? (Wondering)
 
Physics news on Phys.org
Could always use generating functions for the binomial.

mathmari said:
Hey! :o

I am looking at the following:
  1. Show that $\displaystyle{\text{exp}(1)=\sum_{k=0}^{\infty}\frac{1}{k!}=e}$ with $\displaystyle{e:=\lim_{n\rightarrow \infty}\left (1+\frac{1}{n}\right )^n}$.

    Hint: Use the binomial theorem and compare with the partial sum $s_n$ of the series $\sum_{k=0}^{\infty}\frac{1}{k!}$.
  2. Calculate $s_n$ and $\left (1+\frac{1}{n}\right )^n$ for $n=10$ and $n=100$ with exactly $12$ decimal places and compare with $e$.
  3. Show that the differenz of the $n$-th parial sum of the series $\sum_{k=0}^{\infty}\frac{1}{k!}$ can be estimated to $e$ by $0<e-s_n<\frac{1}{n!n}$.
I have done the following:
  1. We have the partial sum $$s_n=\sum_{k=0}^n\frac{1}{k!}$$

    By the binomial theorem we have that $$\left (1+\frac{1}{n}\right )^n=\sum_{k=0}^n\binom{n}{k}\frac{1}{n^k}$$

    We have that \begin{align*}\binom{n}{k}\frac{1}{n^k}&=\frac{n!}{k!\cdot (n-k)!}\cdot \frac{1}{n^k}\\ & =\frac{(n-k+1) \cdot \ldots \cdot (n-1) \cdot n}{k!}\cdot \frac{1}{n^k}\\ & =\frac{1}{k!}\cdot \frac{(n-k+1)\cdot \ldots \cdot (n-1) \cdot n}{n^k}\\ & =\frac{1}{k!}\cdot \frac{n-k+1}{n}\cdot \ldots \cdot \frac{n-1}{n}\cdot \frac{n}{n}\\ & =\frac{1}{k!}\cdot \left (1-\frac{k-1}{n}\right )\cdot \ldots \cdot \left (1-\frac{1}{n}\right )\cdot 1\\ & \leq \frac{1}{k!}\end{align*}We want to find also an upper bound.

    By the binomial theorem we have that $$\left (1+\frac{1}{n+1}\right )^{n+1}=\sum_{k=0}^{n+1}\binom{n+1}{k}\frac{1}{(n+1)^k}$$

    \begin{align*}\binom{n+1}{k}\frac{1}{(n+1)^k}&=\frac{(n+1)!}{k!\cdot ([n+1]-k)!}\cdot \frac{1}{(n+1)^k} \\ & =\frac{([n+1]-k+1)\cdot \ldots \cdot n\cdot (n+1)}{k!}\cdot \frac{1}{(n+1)^k} \\ & \geq \frac{([n+1]-k+1)\cdot \ldots \cdot ([n+1]-k+1)\cdot ([n+1]-k+1)}{k!}\cdot \frac{1}{(n+1)^k} \\ & =\frac{1}{k!}\cdot \frac{([n+1]-k+1)\cdot \ldots \cdot ([n+1]-k+1)\cdot ([n+1]-k+1)}{(n+1)^k}\\ & =\frac{1}{k!}\cdot \frac{[n+1]-k+1}{n+1}\cdot \ldots \cdot \frac{[n+1]-k+1}{n+1}\cdot \frac{[n+1]-k+1}{n+1} \end{align*}

    How can we continue? (Wondering) So, we will get \begin{align*}&\binom{n}{k}\frac{1}{n^k}\leq \frac{1}{k!}\leq \binom{n+1}{k}\frac{1}{(n+1)^k} \\ & \Rightarrow \sum_{k=0}^n\binom{n}{k}\frac{1}{n^k}\leq \sum_{k=0}^n\frac{1}{k!}\leq \sum_{k=0}^n \binom{n+1}{k}\frac{1}{(n+1)^k}\leq \sum_{k=0}^{n+1} \binom{n+1}{k}\frac{1}{(n+1)^k} \\ & \Rightarrow \left (1+\frac{1}{n}\right )^n \leq s_n \leq \left (1+\frac{1}{n+1}\right )^{n+1} \\ & \Rightarrow \lim_{n\rightarrow \infty}\left (1+\frac{1}{n}\right )^n \leq \lim_{n\rightarrow \infty}s_n \leq \lim_{n\rightarrow \infty} \left (1+\frac{1}{n+1}\right )^{n+1} \\ & \Rightarrow e \leq \sum_{k=0}^{\infty}\frac{1}{k!} \leq e \\ & \Rightarrow \sum_{k=0}^{\infty}\frac{1}{k!}=e\end{align*}

    Is everything correct? (Wondering)
  2. Do we calculate $s_n$ and $\left (1+\frac{1}{n}\right )^n$ for $n=10$ and $n=100$ with exactly $12$ decimal places with the calculator, or is it meant to do something else here? (Wondering)
  3. We have that
    $$e-s_n=\sum_{k=0}^{\infty}\frac{1}{k!}-\sum_{k=0}^n\frac{1}{k!}=\sum_{k=n+1}^{\infty}\frac{1}{k!}$$
    We have that $\sum_{k=n+1}^{\infty}\frac{1}{k!}$ is popsitive, sinve every term is positiv. So, $0<e-s_n$.

    Could you give me a hint how we could get the upper bound? (Wondering)
 
mathmari said:
1. We want to find also an upper bound.

By the binomial theorem we have that $$\left (1+\frac{1}{n+1}\right )^{n+1}=\sum_{k=0}^{n+1}\binom{n+1}{k}\frac{1}{(n+1)^k}$$

Hey mathmari! (Smile)

I don't think this is going to work, because if we inspect a couple of values with for instance Excel, we'll see that this won't give us an upper bound. That's because $s_n$ converges much faster than $(1+\frac 1n)^n$.

mathmari said:
2. Do we calculate $s_n$ and $\left (1+\frac{1}{n}\right )^n$ for $n=10$ and $n=100$ with exactly $12$ decimal places with the calculator, or is it meant to do something else here?

I think a calculator is okay, although we need to be careful to avoid serious rounding errors.
With a regular calculator, $1/k!$ will become so small with respect to $s_n$ that adding it will not actually add it.
Btw, I think finding these numbers will show that your approach to find the upper bound won't work. (Thinking)

mathmari said:
3. We have that
$$e-s_n=\sum_{k=0}^{\infty}\frac{1}{k!}-\sum_{k=0}^n\frac{1}{k!}=\sum_{k=n+1}^{\infty}\frac{1}{k!}$$
We have that $\sum_{k=n+1}^{\infty}\frac{1}{k!}$ is popsitive, sinve every term is positiv. So, $0<e-s_n$.

Could you give me a hint how we could get the upper bound?

I think we need to figure out to solve (1) first, although we can probably use the given upper bound as a hint.

To be honest, I haven't figured out yet how to find the upper bound. (Worried)
I did find a possible hint on wiki:
The number $e$ is the unique real number such that
$$\left(1+\frac{1}{x}\right)^x < e < \left(1+\frac{1}{x}\right)^{x+1}$$
for all positive $x$.

(Thinking)
 
I like Serena said:
I did find a possible hint on wiki:
The number $e$ is the unique real number such that
$$\left(1+\frac{1}{x}\right)^x < e < \left(1+\frac{1}{x}\right)^{x+1}$$
for all positive $x$.

(Thinking)


We have the following:
\begin{align*}\left (1+\frac{1}{n}\right )^n&=\sum_{k=0}^n\binom{n}{k}\frac{1}{n^k}\\ & = \sum_{k=0}^n\frac{n!}{k!\cdot (n-k)!}\cdot \frac{1}{n^k} \\ & = \sum_{k=0}^n\frac{(n-k+1)\cdot (n-k+2)\cdot \ldots \cdot (n-1)\cdot n}{k!}\cdot \frac{1}{n^k} \\ &= \sum_{k=0}^n\frac{n-k+1}{n}\cdot \frac{n-k+2}{n}\cdot \ldots \cdot \frac{n-1}{n}\cdot \frac{n}{n}\cdot \frac{1}{k!} \\ & = \sum_{k=0}^n\left (1-\frac{k-1}{n}\right )\cdot \left (1-\frac{k-2}{n}\right )\cdot \ldots \cdot \left (1-\frac{1}{n}\right )\cdot 1\cdot \frac{1}{k!} \\ & \leq \sum_{k=0}^n \frac{1}{k!}\end{align*}

We also have the following:
\begin{align*}\left (1+\frac{1}{n}\right )^{n+1}&=\sum_{k=0}^{n+1}\binom{n+1}{k}\cdot \frac{1}{n^k} \\ & = 1+\sum_{k=1}^{n+1}\binom{n+1}{k}\cdot\frac{1}{n^k} \\ & \overset{ m:=k-1 }{ = } 1+\sum_{m=0}^{n}\binom{n+1}{m+1}\cdot\frac{1}{n^{m+1}} \\ & \overset{ k:=m }{ = } 1+\sum_{k=0}^{n}\binom{n+1}{k+1}\cdot\frac{1}{n^{k+1}} \\ & = 1+\sum_{k=0}^{n}\frac{(n+1)!}{(k+1)!\cdot ([n+1]-[k+1])!}\cdot\frac{1}{n^{k+1}} \\ & = 1+\sum_{k=0}^{n}\frac{(n+1)!}{(k+1)!\cdot (n-k)!}\cdot\frac{1}{n^{k+1}} \\ & = 1+\sum_{k=0}^{n}\frac{(n-k+1)\cdot \ldots n\cdot (n+1)}{(k+1)!}\cdot\frac{1}{n^{k+1}} \\ & \geq 1+\sum_{k=0}^{n}\frac{(n-k+1)\cdot \ldots (n-k+1)\cdot (n-k+1)}{(k+1)!}\cdot\frac{1}{n^{k+1}} \\ & = 1+\sum_{k=0}^{n}\frac{(n-k+1)^{k+1}}{(k+1)!}\cdot\frac{1}{n^{k+1}} \\ & = 1+\sum_{k=0}^{n}\frac{(n-k+1)^{k+1}}{n^{k+1}}\cdot\frac{1}{(k+1)!} \\ & = 1+\sum_{k=0}^{n}\left (\frac{n-k+1}{n}\right )^{k+1}\cdot\frac{1}{(k+1)!} \\ & = 1+\sum_{k=0}^{n}\left (1-\frac{k-1}{n}\right )^{k+1}\cdot\frac{1}{(k+1)!} \\ & \overset{\text{Bernoulli}}{ \geq } 1+\sum_{k=0}^{n}\left [1-\frac{k-1}{n}\cdot (k+1)\right ]\cdot\frac{1}{(k+1)!} \\ & = 1+\sum_{k=0}^{n}\frac{1}{(k+1)!}-\sum_{k=0}^{n}\frac{(k-1)\cdot (k+1)}{n}\cdot\frac{1}{(k+1)!} \\ & = 1+\sum_{k=0}^{n}\frac{1}{(k+1)!}-\frac{1}{n}\cdot \sum_{k=0}^{n}\frac{(k-1)}{k!} \\ & \overset{ m:=k+1}{ = } 1+\sum_{m=1}^{n+1}\frac{1}{m!}-\frac{1}{n}\cdot \sum_{k=0}^{n}\frac{(k-1)}{k!} \\ & \overset{ k:=m}{ = } 1+\sum_{k=1}^{n+1}\frac{1}{k!}-\frac{1}{n}\cdot \sum_{k=0}^{n}\frac{(k-1)}{k!} \\ & = \frac{1}{0!}+\sum_{k=1}^{n}\frac{1}{k!}+\frac{1}{(n+1)!}-\frac{1}{n}\cdot \sum_{k=0}^{n}\frac{(k-1)}{k!} \\ & = \sum_{k=0}^{n}\frac{1}{k!}+\frac{1}{(n+1)!}-\frac{1}{n}\cdot \sum_{k=0}^{n}\frac{(k-1)}{k!} \\ & \geq \sum_{k=0}^{n}\frac{1}{k!}-\frac{1}{n}\cdot \sum_{k=0}^{n}\frac{(k-1)}{k!} \\ & = \sum_{k=0}^{n}\frac{1}{k!}-\frac{1}{n}\cdot \left [-1+0+\sum_{k=2}^{n}\frac{(k-1)}{k!}\right ] \\ & = \sum_{k=0}^{n}\frac{1}{k!}+\frac{1}{n}-\frac{1}{n}\cdot \sum_{k=2}^{n}\left (\frac{k}{k!}-\frac{1}{k!}\right ) \\ & = \sum_{k=0}^{n}\frac{1}{k!}+\frac{1}{n}-\frac{1}{n}\cdot \sum_{k=2}^{n}\left (\frac{1}{(k-1)!}-\frac{1}{k!}\right ) \\ & \overset{\text{telescoping series}}{ = } \sum_{k=0}^{n}\frac{1}{k!}+\frac{1}{n}-\frac{1}{n}\cdot \left (1-\frac{1}{n!}\right ) \\ & = \sum_{k=0}^{n}\frac{1}{k!}+\frac{1}{n}-\frac{1}{n}+\frac{1}{n!}\cdot \frac{1}{n} \\ & \geq \sum_{k=0}^{n}\frac{1}{k!}\end{align*}

Therefore we have that \begin{equation*}\left (1+\frac{1}{n}\right )^n\leq \sum_{k=0}^n \frac{1}{k!}\leq \left (1+\frac{1}{n}\right )^{n+1}\end{equation*}

Taking the limit $n\rightarrow \infty$ we get \begin{equation*}e\leq \sum_{k=0}^{\infty} \frac{1}{k!}\leq e \Rightarrow \sum_{k=0}^{\infty} \frac{1}{k!}=e\end{equation*}


Is everything correct? (Wondering)
 
It seems correct to me, although that is a lot of steps.

In particular I also see the term $\frac{1}{n!n}$ in the last step that I believe we need for (3)? (Thinking)
 
I like Serena said:
It seems correct to me, although that is a lot of steps.

Can we make it a bit shorter? (Wondering)
mathmari said:
2. Calculate $s_n$ and $\left (1+\frac{1}{n}\right )^n$ for $n=10$ and $n=100$ with exactly $12$ decimal places and compare with $e$.

According to the calculator we get (with 12 decimal places) $s_{10}=\sum_{k=0}^{10}\frac{1}{k!}=2.718281801146$ and $\left (1+\frac{1}{10}\right )^{10}=2.593742460100$. We have that $e=2.718281828459$. We see that $s_{10}$ is closer to $e$ as $\left (1+\frac{1}{10}\right )^{10}$.

According to the calculator we get (with 12 decimal places) $s_{100}=\sum_{k=0}^{100}\frac{1}{k!}=2.718281828459$ and $\left (1+\frac{1}{100}\right )^{100}=2.704813829422$. We have that $e=2.718281828459$. We see that that the first 12 deimal places of $s_{100}$ are the same as these of $e$.

Is this the comparison? Or do we have to say also something else? (Wondering)
 
Last edited by a moderator:
mathmari said:
3. Show that the differenz of the $n$-th parial sum of the series $\sum_{k=0}^{\infty}\frac{1}{k!}$ can be estimated to $e$ by $0<e-s_n<\frac{1}{n!n}$.

I like Serena said:
In particular I also see the term $\frac{1}{n!n}$ in the last step that I believe we need for (3)? (Thinking)

How can we use this term? I got stuck right now.

\begin{equation*}\left (1+\frac{1}{n}\right )^{n+1} \geq \sum_{k=0}^{n}\frac{1}{k!}+\frac{1}{n!}\cdot \frac{1}{n} \end{equation*} The left side is also bigger when $n\rightarrow \infty$. So, we get\begin{align*}&\lim_{n\rightarrow\infty}\left (1+\frac{1}{n}\right )^{n+1} \geq \sum_{k=0}^{n}\frac{1}{k!}+\frac{1}{n!\cdot n}\Rightarrow \lim_{n\rightarrow\infty}\left (1+\frac{1}{n}\right )^{n+1} - \sum_{k=0}^{n}\frac{1}{k!}\geq\frac{1}{n!\cdot n} \\ & \Rightarrow e-s_n\geq\frac{1}{n!\cdot n}\end{align*} In this way we get the wrong inequality.

Or have I done something wrong?

(Wondering)
 
mathmari said:
Can we make it a bit shorter?

As yet I don't see how. (Worried)

mathmari said:
According to the calculator we get (with 12 decimal places) $s_{10}=\sum_{k=0}^{10}\frac{1}{k!}=2.718281801146$ and $\left (1+\frac{1}{10}\right )^{10}=2.593742460100$. We have that $e=2.718281828459$. We see that $s_{10}$ is closer to $e$ as $\left (1+\frac{1}{10}\right )^{10}$.

According to the calculator we get (with 12 decimal places) $s_{100}=\sum_{k=0}^{100}\frac{1}{k!}=2.718281828459$ and $\left (1+\frac{1}{100}\right )^{100}=2.704813829422$. We have that $e=2.718281828459$. We see that that the first 12 deimal places of $s_{100}$ are the same as these of $e$.

Is this the comparison? Or do we have to say also something else?

I believe so yes.
In particular we see that $s_n$ approaches $e$ much faster. (Nerd)

mathmari said:
How can we use this term? I got stuck right now.

\begin{equation*}\left (1+\frac{1}{n}\right )^{n+1} \geq \sum_{k=0}^{n}\frac{1}{k!}+\frac{1}{n!}\cdot \frac{1}{n} \end{equation*} The left side is also bigger when $n\rightarrow \infty$. So, we get\begin{align*}&\lim_{n\rightarrow\infty}\left (1+\frac{1}{n}\right )^{n+1} \geq \sum_{k=0}^{n}\frac{1}{k!}+\frac{1}{n!\cdot n}\Rightarrow \lim_{n\rightarrow\infty}\left (1+\frac{1}{n}\right )^{n+1} - \sum_{k=0}^{n}\frac{1}{k!}\geq\frac{1}{n!\cdot n} \\ & \Rightarrow e-s_n\geq\frac{1}{n!\cdot n}\end{align*} In this way we get the wrong inequality.

Or have I done something wrong?

As you said, I think we cannot do it this way after all because the bound is on the wrong side of $e$. (Worried)

Instead we can use for part (3) that $s_n$ is the Taylor series for $e^x$ with $x=1$.
Its Lagrange form of the remainder is $$R_n(1)=\frac{\exp^{(n+1)}(\xi)}{(n+1)!}x^{n+1}\Big|_{x=1}= \dfrac{e^\xi}{(n+1)!}$$
where $0<\xi<x = 1$.
So:
$$
0<\frac{e^0}{(n+1)!} < e - s_n < \frac{e^1}{(n+1)!}
$$
Hmm... it seems we're just a little short of $\frac{1}{n!n}$. (Sweating)
 

Similar threads

Replies
32
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
8
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K