Can we somehow modify the Lagrange form to get a tighter bound? (Curious)

Click For Summary
SUMMARY

The discussion centers on proving that the series $\sum_{k=0}^{\infty}\frac{1}{k!}$ converges to the mathematical constant $e$, defined as $\lim_{n\rightarrow \infty}\left (1+\frac{1}{n}\right )^n$. Participants utilize the binomial theorem to derive upper and lower bounds for the partial sums $s_n$ of the series, demonstrating that $e$ lies between these bounds. The key inequality established is $0 < e - s_n < \frac{1}{n!n}$, which provides a method for estimating the difference between $e$ and the partial sum.

PREREQUISITES
  • Understanding of the exponential function and its series representation.
  • Familiarity with the binomial theorem and its applications.
  • Knowledge of limits and convergence of series.
  • Ability to perform calculations with factorials and series expansions.
NEXT STEPS
  • Study the convergence properties of series, specifically the Taylor series for exponential functions.
  • Learn about the binomial theorem and its implications in estimating series bounds.
  • Explore numerical methods for calculating limits and series with high precision.
  • Investigate generating functions and their applications in combinatorial proofs.
USEFUL FOR

Mathematicians, students studying calculus or analysis, and anyone interested in the properties of exponential functions and series convergence.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I am looking at the following:
  1. Show that $\displaystyle{\text{exp}(1)=\sum_{k=0}^{\infty}\frac{1}{k!}=e}$ with $\displaystyle{e:=\lim_{n\rightarrow \infty}\left (1+\frac{1}{n}\right )^n}$.

    Hint: Use the binomial theorem and compare with the partial sum $s_n$ of the series $\sum_{k=0}^{\infty}\frac{1}{k!}$.
  2. Calculate $s_n$ and $\left (1+\frac{1}{n}\right )^n$ for $n=10$ and $n=100$ with exactly $12$ decimal places and compare with $e$.
  3. Show that the differenz of the $n$-th parial sum of the series $\sum_{k=0}^{\infty}\frac{1}{k!}$ can be estimated to $e$ by $0<e-s_n<\frac{1}{n!n}$.
I have done the following:
  1. We have the partial sum $$s_n=\sum_{k=0}^n\frac{1}{k!}$$

    By the binomial theorem we have that $$\left (1+\frac{1}{n}\right )^n=\sum_{k=0}^n\binom{n}{k}\frac{1}{n^k}$$

    We have that \begin{align*}\binom{n}{k}\frac{1}{n^k}&=\frac{n!}{k!\cdot (n-k)!}\cdot \frac{1}{n^k}\\ & =\frac{(n-k+1) \cdot \ldots \cdot (n-1) \cdot n}{k!}\cdot \frac{1}{n^k}\\ & =\frac{1}{k!}\cdot \frac{(n-k+1)\cdot \ldots \cdot (n-1) \cdot n}{n^k}\\ & =\frac{1}{k!}\cdot \frac{n-k+1}{n}\cdot \ldots \cdot \frac{n-1}{n}\cdot \frac{n}{n}\\ & =\frac{1}{k!}\cdot \left (1-\frac{k-1}{n}\right )\cdot \ldots \cdot \left (1-\frac{1}{n}\right )\cdot 1\\ & \leq \frac{1}{k!}\end{align*}We want to find also an upper bound.

    By the binomial theorem we have that $$\left (1+\frac{1}{n+1}\right )^{n+1}=\sum_{k=0}^{n+1}\binom{n+1}{k}\frac{1}{(n+1)^k}$$

    \begin{align*}\binom{n+1}{k}\frac{1}{(n+1)^k}&=\frac{(n+1)!}{k!\cdot ([n+1]-k)!}\cdot \frac{1}{(n+1)^k} \\ & =\frac{([n+1]-k+1)\cdot \ldots \cdot n\cdot (n+1)}{k!}\cdot \frac{1}{(n+1)^k} \\ & \geq \frac{([n+1]-k+1)\cdot \ldots \cdot ([n+1]-k+1)\cdot ([n+1]-k+1)}{k!}\cdot \frac{1}{(n+1)^k} \\ & =\frac{1}{k!}\cdot \frac{([n+1]-k+1)\cdot \ldots \cdot ([n+1]-k+1)\cdot ([n+1]-k+1)}{(n+1)^k}\\ & =\frac{1}{k!}\cdot \frac{[n+1]-k+1}{n+1}\cdot \ldots \cdot \frac{[n+1]-k+1}{n+1}\cdot \frac{[n+1]-k+1}{n+1} \end{align*}

    How can we continue? (Wondering) So, we will get \begin{align*}&\binom{n}{k}\frac{1}{n^k}\leq \frac{1}{k!}\leq \binom{n+1}{k}\frac{1}{(n+1)^k} \\ & \Rightarrow \sum_{k=0}^n\binom{n}{k}\frac{1}{n^k}\leq \sum_{k=0}^n\frac{1}{k!}\leq \sum_{k=0}^n \binom{n+1}{k}\frac{1}{(n+1)^k}\leq \sum_{k=0}^{n+1} \binom{n+1}{k}\frac{1}{(n+1)^k} \\ & \Rightarrow \left (1+\frac{1}{n}\right )^n \leq s_n \leq \left (1+\frac{1}{n+1}\right )^{n+1} \\ & \Rightarrow \lim_{n\rightarrow \infty}\left (1+\frac{1}{n}\right )^n \leq \lim_{n\rightarrow \infty}s_n \leq \lim_{n\rightarrow \infty} \left (1+\frac{1}{n+1}\right )^{n+1} \\ & \Rightarrow e \leq \sum_{k=0}^{\infty}\frac{1}{k!} \leq e \\ & \Rightarrow \sum_{k=0}^{\infty}\frac{1}{k!}=e\end{align*}

    Is everything correct? (Wondering)
  2. Do we calculate $s_n$ and $\left (1+\frac{1}{n}\right )^n$ for $n=10$ and $n=100$ with exactly $12$ decimal places with the calculator, or is it meant to do something else here? (Wondering)
  3. We have that
    $$e-s_n=\sum_{k=0}^{\infty}\frac{1}{k!}-\sum_{k=0}^n\frac{1}{k!}=\sum_{k=n+1}^{\infty}\frac{1}{k!}$$
    We have that $\sum_{k=n+1}^{\infty}\frac{1}{k!}$ is popsitive, sinve every term is positiv. So, $0<e-s_n$.

    Could you give me a hint how we could get the upper bound? (Wondering)
 
Physics news on Phys.org
Could always use generating functions for the binomial.

mathmari said:
Hey! :o

I am looking at the following:
  1. Show that $\displaystyle{\text{exp}(1)=\sum_{k=0}^{\infty}\frac{1}{k!}=e}$ with $\displaystyle{e:=\lim_{n\rightarrow \infty}\left (1+\frac{1}{n}\right )^n}$.

    Hint: Use the binomial theorem and compare with the partial sum $s_n$ of the series $\sum_{k=0}^{\infty}\frac{1}{k!}$.
  2. Calculate $s_n$ and $\left (1+\frac{1}{n}\right )^n$ for $n=10$ and $n=100$ with exactly $12$ decimal places and compare with $e$.
  3. Show that the differenz of the $n$-th parial sum of the series $\sum_{k=0}^{\infty}\frac{1}{k!}$ can be estimated to $e$ by $0<e-s_n<\frac{1}{n!n}$.
I have done the following:
  1. We have the partial sum $$s_n=\sum_{k=0}^n\frac{1}{k!}$$

    By the binomial theorem we have that $$\left (1+\frac{1}{n}\right )^n=\sum_{k=0}^n\binom{n}{k}\frac{1}{n^k}$$

    We have that \begin{align*}\binom{n}{k}\frac{1}{n^k}&=\frac{n!}{k!\cdot (n-k)!}\cdot \frac{1}{n^k}\\ & =\frac{(n-k+1) \cdot \ldots \cdot (n-1) \cdot n}{k!}\cdot \frac{1}{n^k}\\ & =\frac{1}{k!}\cdot \frac{(n-k+1)\cdot \ldots \cdot (n-1) \cdot n}{n^k}\\ & =\frac{1}{k!}\cdot \frac{n-k+1}{n}\cdot \ldots \cdot \frac{n-1}{n}\cdot \frac{n}{n}\\ & =\frac{1}{k!}\cdot \left (1-\frac{k-1}{n}\right )\cdot \ldots \cdot \left (1-\frac{1}{n}\right )\cdot 1\\ & \leq \frac{1}{k!}\end{align*}We want to find also an upper bound.

    By the binomial theorem we have that $$\left (1+\frac{1}{n+1}\right )^{n+1}=\sum_{k=0}^{n+1}\binom{n+1}{k}\frac{1}{(n+1)^k}$$

    \begin{align*}\binom{n+1}{k}\frac{1}{(n+1)^k}&=\frac{(n+1)!}{k!\cdot ([n+1]-k)!}\cdot \frac{1}{(n+1)^k} \\ & =\frac{([n+1]-k+1)\cdot \ldots \cdot n\cdot (n+1)}{k!}\cdot \frac{1}{(n+1)^k} \\ & \geq \frac{([n+1]-k+1)\cdot \ldots \cdot ([n+1]-k+1)\cdot ([n+1]-k+1)}{k!}\cdot \frac{1}{(n+1)^k} \\ & =\frac{1}{k!}\cdot \frac{([n+1]-k+1)\cdot \ldots \cdot ([n+1]-k+1)\cdot ([n+1]-k+1)}{(n+1)^k}\\ & =\frac{1}{k!}\cdot \frac{[n+1]-k+1}{n+1}\cdot \ldots \cdot \frac{[n+1]-k+1}{n+1}\cdot \frac{[n+1]-k+1}{n+1} \end{align*}

    How can we continue? (Wondering) So, we will get \begin{align*}&\binom{n}{k}\frac{1}{n^k}\leq \frac{1}{k!}\leq \binom{n+1}{k}\frac{1}{(n+1)^k} \\ & \Rightarrow \sum_{k=0}^n\binom{n}{k}\frac{1}{n^k}\leq \sum_{k=0}^n\frac{1}{k!}\leq \sum_{k=0}^n \binom{n+1}{k}\frac{1}{(n+1)^k}\leq \sum_{k=0}^{n+1} \binom{n+1}{k}\frac{1}{(n+1)^k} \\ & \Rightarrow \left (1+\frac{1}{n}\right )^n \leq s_n \leq \left (1+\frac{1}{n+1}\right )^{n+1} \\ & \Rightarrow \lim_{n\rightarrow \infty}\left (1+\frac{1}{n}\right )^n \leq \lim_{n\rightarrow \infty}s_n \leq \lim_{n\rightarrow \infty} \left (1+\frac{1}{n+1}\right )^{n+1} \\ & \Rightarrow e \leq \sum_{k=0}^{\infty}\frac{1}{k!} \leq e \\ & \Rightarrow \sum_{k=0}^{\infty}\frac{1}{k!}=e\end{align*}

    Is everything correct? (Wondering)
  2. Do we calculate $s_n$ and $\left (1+\frac{1}{n}\right )^n$ for $n=10$ and $n=100$ with exactly $12$ decimal places with the calculator, or is it meant to do something else here? (Wondering)
  3. We have that
    $$e-s_n=\sum_{k=0}^{\infty}\frac{1}{k!}-\sum_{k=0}^n\frac{1}{k!}=\sum_{k=n+1}^{\infty}\frac{1}{k!}$$
    We have that $\sum_{k=n+1}^{\infty}\frac{1}{k!}$ is popsitive, sinve every term is positiv. So, $0<e-s_n$.

    Could you give me a hint how we could get the upper bound? (Wondering)
 
mathmari said:
1. We want to find also an upper bound.

By the binomial theorem we have that $$\left (1+\frac{1}{n+1}\right )^{n+1}=\sum_{k=0}^{n+1}\binom{n+1}{k}\frac{1}{(n+1)^k}$$

Hey mathmari! (Smile)

I don't think this is going to work, because if we inspect a couple of values with for instance Excel, we'll see that this won't give us an upper bound. That's because $s_n$ converges much faster than $(1+\frac 1n)^n$.

mathmari said:
2. Do we calculate $s_n$ and $\left (1+\frac{1}{n}\right )^n$ for $n=10$ and $n=100$ with exactly $12$ decimal places with the calculator, or is it meant to do something else here?

I think a calculator is okay, although we need to be careful to avoid serious rounding errors.
With a regular calculator, $1/k!$ will become so small with respect to $s_n$ that adding it will not actually add it.
Btw, I think finding these numbers will show that your approach to find the upper bound won't work. (Thinking)

mathmari said:
3. We have that
$$e-s_n=\sum_{k=0}^{\infty}\frac{1}{k!}-\sum_{k=0}^n\frac{1}{k!}=\sum_{k=n+1}^{\infty}\frac{1}{k!}$$
We have that $\sum_{k=n+1}^{\infty}\frac{1}{k!}$ is popsitive, sinve every term is positiv. So, $0<e-s_n$.

Could you give me a hint how we could get the upper bound?

I think we need to figure out to solve (1) first, although we can probably use the given upper bound as a hint.

To be honest, I haven't figured out yet how to find the upper bound. (Worried)
I did find a possible hint on wiki:
The number $e$ is the unique real number such that
$$\left(1+\frac{1}{x}\right)^x < e < \left(1+\frac{1}{x}\right)^{x+1}$$
for all positive $x$.

(Thinking)
 
I like Serena said:
I did find a possible hint on wiki:
The number $e$ is the unique real number such that
$$\left(1+\frac{1}{x}\right)^x < e < \left(1+\frac{1}{x}\right)^{x+1}$$
for all positive $x$.

(Thinking)


We have the following:
\begin{align*}\left (1+\frac{1}{n}\right )^n&=\sum_{k=0}^n\binom{n}{k}\frac{1}{n^k}\\ & = \sum_{k=0}^n\frac{n!}{k!\cdot (n-k)!}\cdot \frac{1}{n^k} \\ & = \sum_{k=0}^n\frac{(n-k+1)\cdot (n-k+2)\cdot \ldots \cdot (n-1)\cdot n}{k!}\cdot \frac{1}{n^k} \\ &= \sum_{k=0}^n\frac{n-k+1}{n}\cdot \frac{n-k+2}{n}\cdot \ldots \cdot \frac{n-1}{n}\cdot \frac{n}{n}\cdot \frac{1}{k!} \\ & = \sum_{k=0}^n\left (1-\frac{k-1}{n}\right )\cdot \left (1-\frac{k-2}{n}\right )\cdot \ldots \cdot \left (1-\frac{1}{n}\right )\cdot 1\cdot \frac{1}{k!} \\ & \leq \sum_{k=0}^n \frac{1}{k!}\end{align*}

We also have the following:
\begin{align*}\left (1+\frac{1}{n}\right )^{n+1}&=\sum_{k=0}^{n+1}\binom{n+1}{k}\cdot \frac{1}{n^k} \\ & = 1+\sum_{k=1}^{n+1}\binom{n+1}{k}\cdot\frac{1}{n^k} \\ & \overset{ m:=k-1 }{ = } 1+\sum_{m=0}^{n}\binom{n+1}{m+1}\cdot\frac{1}{n^{m+1}} \\ & \overset{ k:=m }{ = } 1+\sum_{k=0}^{n}\binom{n+1}{k+1}\cdot\frac{1}{n^{k+1}} \\ & = 1+\sum_{k=0}^{n}\frac{(n+1)!}{(k+1)!\cdot ([n+1]-[k+1])!}\cdot\frac{1}{n^{k+1}} \\ & = 1+\sum_{k=0}^{n}\frac{(n+1)!}{(k+1)!\cdot (n-k)!}\cdot\frac{1}{n^{k+1}} \\ & = 1+\sum_{k=0}^{n}\frac{(n-k+1)\cdot \ldots n\cdot (n+1)}{(k+1)!}\cdot\frac{1}{n^{k+1}} \\ & \geq 1+\sum_{k=0}^{n}\frac{(n-k+1)\cdot \ldots (n-k+1)\cdot (n-k+1)}{(k+1)!}\cdot\frac{1}{n^{k+1}} \\ & = 1+\sum_{k=0}^{n}\frac{(n-k+1)^{k+1}}{(k+1)!}\cdot\frac{1}{n^{k+1}} \\ & = 1+\sum_{k=0}^{n}\frac{(n-k+1)^{k+1}}{n^{k+1}}\cdot\frac{1}{(k+1)!} \\ & = 1+\sum_{k=0}^{n}\left (\frac{n-k+1}{n}\right )^{k+1}\cdot\frac{1}{(k+1)!} \\ & = 1+\sum_{k=0}^{n}\left (1-\frac{k-1}{n}\right )^{k+1}\cdot\frac{1}{(k+1)!} \\ & \overset{\text{Bernoulli}}{ \geq } 1+\sum_{k=0}^{n}\left [1-\frac{k-1}{n}\cdot (k+1)\right ]\cdot\frac{1}{(k+1)!} \\ & = 1+\sum_{k=0}^{n}\frac{1}{(k+1)!}-\sum_{k=0}^{n}\frac{(k-1)\cdot (k+1)}{n}\cdot\frac{1}{(k+1)!} \\ & = 1+\sum_{k=0}^{n}\frac{1}{(k+1)!}-\frac{1}{n}\cdot \sum_{k=0}^{n}\frac{(k-1)}{k!} \\ & \overset{ m:=k+1}{ = } 1+\sum_{m=1}^{n+1}\frac{1}{m!}-\frac{1}{n}\cdot \sum_{k=0}^{n}\frac{(k-1)}{k!} \\ & \overset{ k:=m}{ = } 1+\sum_{k=1}^{n+1}\frac{1}{k!}-\frac{1}{n}\cdot \sum_{k=0}^{n}\frac{(k-1)}{k!} \\ & = \frac{1}{0!}+\sum_{k=1}^{n}\frac{1}{k!}+\frac{1}{(n+1)!}-\frac{1}{n}\cdot \sum_{k=0}^{n}\frac{(k-1)}{k!} \\ & = \sum_{k=0}^{n}\frac{1}{k!}+\frac{1}{(n+1)!}-\frac{1}{n}\cdot \sum_{k=0}^{n}\frac{(k-1)}{k!} \\ & \geq \sum_{k=0}^{n}\frac{1}{k!}-\frac{1}{n}\cdot \sum_{k=0}^{n}\frac{(k-1)}{k!} \\ & = \sum_{k=0}^{n}\frac{1}{k!}-\frac{1}{n}\cdot \left [-1+0+\sum_{k=2}^{n}\frac{(k-1)}{k!}\right ] \\ & = \sum_{k=0}^{n}\frac{1}{k!}+\frac{1}{n}-\frac{1}{n}\cdot \sum_{k=2}^{n}\left (\frac{k}{k!}-\frac{1}{k!}\right ) \\ & = \sum_{k=0}^{n}\frac{1}{k!}+\frac{1}{n}-\frac{1}{n}\cdot \sum_{k=2}^{n}\left (\frac{1}{(k-1)!}-\frac{1}{k!}\right ) \\ & \overset{\text{telescoping series}}{ = } \sum_{k=0}^{n}\frac{1}{k!}+\frac{1}{n}-\frac{1}{n}\cdot \left (1-\frac{1}{n!}\right ) \\ & = \sum_{k=0}^{n}\frac{1}{k!}+\frac{1}{n}-\frac{1}{n}+\frac{1}{n!}\cdot \frac{1}{n} \\ & \geq \sum_{k=0}^{n}\frac{1}{k!}\end{align*}

Therefore we have that \begin{equation*}\left (1+\frac{1}{n}\right )^n\leq \sum_{k=0}^n \frac{1}{k!}\leq \left (1+\frac{1}{n}\right )^{n+1}\end{equation*}

Taking the limit $n\rightarrow \infty$ we get \begin{equation*}e\leq \sum_{k=0}^{\infty} \frac{1}{k!}\leq e \Rightarrow \sum_{k=0}^{\infty} \frac{1}{k!}=e\end{equation*}


Is everything correct? (Wondering)
 
It seems correct to me, although that is a lot of steps.

In particular I also see the term $\frac{1}{n!n}$ in the last step that I believe we need for (3)? (Thinking)
 
I like Serena said:
It seems correct to me, although that is a lot of steps.

Can we make it a bit shorter? (Wondering)
mathmari said:
2. Calculate $s_n$ and $\left (1+\frac{1}{n}\right )^n$ for $n=10$ and $n=100$ with exactly $12$ decimal places and compare with $e$.

According to the calculator we get (with 12 decimal places) $s_{10}=\sum_{k=0}^{10}\frac{1}{k!}=2.718281801146$ and $\left (1+\frac{1}{10}\right )^{10}=2.593742460100$. We have that $e=2.718281828459$. We see that $s_{10}$ is closer to $e$ as $\left (1+\frac{1}{10}\right )^{10}$.

According to the calculator we get (with 12 decimal places) $s_{100}=\sum_{k=0}^{100}\frac{1}{k!}=2.718281828459$ and $\left (1+\frac{1}{100}\right )^{100}=2.704813829422$. We have that $e=2.718281828459$. We see that that the first 12 deimal places of $s_{100}$ are the same as these of $e$.

Is this the comparison? Or do we have to say also something else? (Wondering)
 
Last edited by a moderator:
mathmari said:
3. Show that the differenz of the $n$-th parial sum of the series $\sum_{k=0}^{\infty}\frac{1}{k!}$ can be estimated to $e$ by $0<e-s_n<\frac{1}{n!n}$.

I like Serena said:
In particular I also see the term $\frac{1}{n!n}$ in the last step that I believe we need for (3)? (Thinking)

How can we use this term? I got stuck right now.

\begin{equation*}\left (1+\frac{1}{n}\right )^{n+1} \geq \sum_{k=0}^{n}\frac{1}{k!}+\frac{1}{n!}\cdot \frac{1}{n} \end{equation*} The left side is also bigger when $n\rightarrow \infty$. So, we get\begin{align*}&\lim_{n\rightarrow\infty}\left (1+\frac{1}{n}\right )^{n+1} \geq \sum_{k=0}^{n}\frac{1}{k!}+\frac{1}{n!\cdot n}\Rightarrow \lim_{n\rightarrow\infty}\left (1+\frac{1}{n}\right )^{n+1} - \sum_{k=0}^{n}\frac{1}{k!}\geq\frac{1}{n!\cdot n} \\ & \Rightarrow e-s_n\geq\frac{1}{n!\cdot n}\end{align*} In this way we get the wrong inequality.

Or have I done something wrong?

(Wondering)
 
mathmari said:
Can we make it a bit shorter?

As yet I don't see how. (Worried)

mathmari said:
According to the calculator we get (with 12 decimal places) $s_{10}=\sum_{k=0}^{10}\frac{1}{k!}=2.718281801146$ and $\left (1+\frac{1}{10}\right )^{10}=2.593742460100$. We have that $e=2.718281828459$. We see that $s_{10}$ is closer to $e$ as $\left (1+\frac{1}{10}\right )^{10}$.

According to the calculator we get (with 12 decimal places) $s_{100}=\sum_{k=0}^{100}\frac{1}{k!}=2.718281828459$ and $\left (1+\frac{1}{100}\right )^{100}=2.704813829422$. We have that $e=2.718281828459$. We see that that the first 12 deimal places of $s_{100}$ are the same as these of $e$.

Is this the comparison? Or do we have to say also something else?

I believe so yes.
In particular we see that $s_n$ approaches $e$ much faster. (Nerd)

mathmari said:
How can we use this term? I got stuck right now.

\begin{equation*}\left (1+\frac{1}{n}\right )^{n+1} \geq \sum_{k=0}^{n}\frac{1}{k!}+\frac{1}{n!}\cdot \frac{1}{n} \end{equation*} The left side is also bigger when $n\rightarrow \infty$. So, we get\begin{align*}&\lim_{n\rightarrow\infty}\left (1+\frac{1}{n}\right )^{n+1} \geq \sum_{k=0}^{n}\frac{1}{k!}+\frac{1}{n!\cdot n}\Rightarrow \lim_{n\rightarrow\infty}\left (1+\frac{1}{n}\right )^{n+1} - \sum_{k=0}^{n}\frac{1}{k!}\geq\frac{1}{n!\cdot n} \\ & \Rightarrow e-s_n\geq\frac{1}{n!\cdot n}\end{align*} In this way we get the wrong inequality.

Or have I done something wrong?

As you said, I think we cannot do it this way after all because the bound is on the wrong side of $e$. (Worried)

Instead we can use for part (3) that $s_n$ is the Taylor series for $e^x$ with $x=1$.
Its Lagrange form of the remainder is $$R_n(1)=\frac{\exp^{(n+1)}(\xi)}{(n+1)!}x^{n+1}\Big|_{x=1}= \dfrac{e^\xi}{(n+1)!}$$
where $0<\xi<x = 1$.
So:
$$
0<\frac{e^0}{(n+1)!} < e - s_n < \frac{e^1}{(n+1)!}
$$
Hmm... it seems we're just a little short of $\frac{1}{n!n}$. (Sweating)
 

Similar threads

Replies
32
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
8
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K