B Can you create neutronium by colliding electrons and protons?

  • B
  • Thread starter Thread starter arusse02
  • Start date Start date
  • Tags Tags
    Electrons Protons
arusse02
Messages
24
Reaction score
0
Suppose in a Vacuum with no external influences we have two particle accelerators pointed at each other. They're maximally precise and one fires an electron while another fires a proton. Both the electron and proton have the same amount of momentum such that their x-axis velocity completely cancels out, and because the colliders are so precise there is no y or z component velocities either. Relative to the colliders the resulting neutrons have no velocity at all. The timing of firing an electron and proton is perfect as well so the collisions all take place in the same location.

Would you start accumulating neutrons at the collision point and therefore produce neutronium? Because the decay rate is 15 minutes for the neutrons, would you be able to accumulate a large number of neutrons assuming you're firing a lot of electrons and protons?

Would this collection of neutrons be neutronium and how would it behave? What happens to the mass as you start accumulating more neutrons? When would it become a stable mass that would not decay?
 
Physics news on Phys.org
Not that wiki is a valid reference source for PF, but it might provide a simple primer for more nuanced questions:
https://en.wikipedia.org/wiki/Neutronium
esp. the sections on isotopes and properties of neutronium
Did not know about dineutron and trineutron...
 
arusse02 said:
Would this collection of neutrons be neutronium
No.

Most of the time the electron will merely scatter.

If the electron interacts, it will make a neutron and a neutrino, so the neutrons will be bouncing around in all sorts of directions.
 
Last edited:
  • Like
Likes PeroK and topsquark
@arusse02 in the case of classical physics check out Rutherford scattering. For the quantum mechanical case, the uncertainty principle prevents the certainty of a head-on collision.
 
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top