MHB Can you prove the cosine rule for three angles in a triangle?

Click For Summary
The discussion centers on proving the identity $\cos^2 x + \cos^2 y + \cos^2 z + 2\cos x \cos y \cos z = 1$ for angles $x, y, z$ that sum to $2\pi$. Participants engage in rewriting the solution for clarity, emphasizing the need for clear presentation in LaTeX format. The proof involves trigonometric identities and properties of cosine functions related to angles in a triangle. The conversation highlights the importance of precise mathematical communication. The thread concludes with a focus on improving readability and understanding of the proof.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For all $x,\,y,\,z \in R$ with $x+y+z=2\pi$, prove that $\cos^2 x+\cos^2 y+\cos^2 z+2\cos x\cos y \cos z=1$
 
Mathematics news on Phys.org
anemone said:
For all $x,\,y,\,z \in R$ with $x+y+z=2\pi$, prove that $\cos^2 x+\cos^2 y+\cos^2 z+2\cos x\cos y \cos z=1$
$\cos²x+\cos²y+\cos²z+2 \cos x \cos y \cos z $
= $cos²x+cos²y+cos²(\pi-z)+2 cos x cos y cos z$
= $cos²x+cos²y+cos²(x+y)+2 cos x cos y cos z$
= $cos²x+cos²y+(cos x cos y - sin x sin y)^2+2 cos x cos y cos z$
=$ cos²x+cos²y+ cos^2 x cos^2 y + sin ^2 x sin^2 y- 2 cos 2 x cos y sin x sin y+2 cos x cos y cos z$
= $cos²x+cos²y+ cos^2 x cos^2 y + ( 1- cos ^2 x)(1- cos ^2 y)- 2 cos 2 x cos y sin x sin y+2 cos x cos y cos z$
= $cos ^2 x + cos^2 y + cos^2 x cos^2 y + 1 – cos^2 x – cos^2 y + cos^2 x cos^2 y - 2 cos 2 x cos y sin x sin y+2 cos x cos y cos z$
= $1+ 2 cos^2 x cos^2 y - 2 cos 2 x cos y sin x sin y+2 cos x cos y cos z$
= $1 + 2 cos x cos y ( cos x cos y – sin x sin y)+2 cos x cos y cos z$
= $1 + 2 cos x cos y cos (x+y)+2 cos x cos y cos z$
= $1 – 2 cos x cos y cos (\pi – ( x + y))+2 cos x cos y cos z$
= $1 – 2 cos x cos y cos z+2 cos x cos y cos z$
= 1
 
Last edited:
Thanks for participating, kaliprasad!

Another method would be to perceive the given equation as a quadratic equation $k^2+(2\cos y \cos z)k +(\cos^2 y+\cos^2 z-1)=0$ and our task is to show that this quadratic equation has a root $k=\cos x$.

By the quadratic formula, we have

$\begin{align*}k&=\dfrac{-2\cos y \cos z\pm\sqrt{4\cos^2 y \cos^2 z-4(\cos^2 y+\cos^2 z-1)}}{2}\\&=-\cos y \cos z\pm\sqrt{(1-\cos^2y)(1-\cos^2z)}\\&=-\cos y \cos z\pm|\sin y\sin z|\end{align*}$

Since $-\cos y \cos z+\sin y\sin z=-\cos(y+z)=\cos(\pi-x)=\cos x$, we find that $k=\cos x$ satisfies the quadratic equation, as desired.
 
$\cos^2x+\cos^2y+\cos^2z+2\cos x\cos y\cos z=\cos^2x+\cos^2y+\cos^2(\pi−z)+2\cos x\cos y\cos z$
$=\cos^2x+\cos^2y+\cos^2(x+y)+2\cos x\cos y\cos z$
$=\cos^2x+\cos^2y+(\cos x\cos y−\sin x\sin y)^2+2\cos x\cos y\cos z$
$=\cos^2x+\cos^2y+\cos^2x\cos^2y+\sin^2x\sin^2y−2\cos x \cos y\sin x\sin y+2\cos x\cos y\cos z$
$=\cos^2x+\cos^2y+\cos^2x\cos^2y+(1−\cos^2x)(1−\cos^2y)−2\cos x\cos y\sin x\sin y+2\cos x\cos y\cos z$
$=\cos^2x+\cos^2y+\cos^2x\cos^2y+1–\cos^2x–\cos^2y+\cos^2x\cos^2y−2\cos x\cos y\ sin x\sin y+2\cos x\cos y\cos z$
$=1+2\cos ^2x \cos^2y−2\cos^2x\cos y\sin x\sin y+2\cos x\cos y \cos z$
$=1+2\cos x\cos y(\cos x\cos y–\sin x\sin y)+2\cos x\cos y\cos z$
$=1+2\cos x\cos y\cos(x+y)+2\cos x\cos y\cos z$
$=1–2\cos x\cos y\cos(π–(x+y))+2\cos x\cos y\cos z$
$=1–2\cos x\cos y\cos z+2\cos x\cos y\cos z=1$

rewrote the solution with the latex as previous solution to not clear to read
 
Last edited by a moderator:
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K