MHB Can you prove the following two difficult trigonometric identities?

AI Thread Summary
The discussion focuses on proving two challenging trigonometric identities involving secant, tangent, sine, and cosine functions. Participants are encouraged to use the available LaTeX compiler for clear expression of mathematical equations. A free math tutoring video is suggested for those needing assistance with the proof methods. The conversation highlights the importance of community support in tackling complex mathematical problems. Overall, the forum serves as a resource for learning and collaboration in mathematics.
DrLiangMath
Messages
21
Reaction score
0
Can you prove the following?

[sec(x)]^6 - [tan(x)]^6 = 1 + 3*[tan(x)]^2*[sec(x)]^2

[sin(x)]^2*tan(x) + [cos(x)]^2*cot(x) + 2*sin(x)*cos(x) = tan(x) + cot(x)

If not, the following free math tutoring video shows you the method:

 
Mathematics news on Phys.org
@Dr. Liang: We have a LaTeX compiler here that you can use to type out the equations. If you don't know LaTeX reply to this to see how the coding works. The basics are simple and we have a Forum to show you how to do more complicated work.
[math]sec^6(x) - tan^6(x) = 1 + 3 ~tan^2(x) ~ sec^2(x)[/math]

[math]sin^2(x) ~ tan(x) + cos^2(x) ~ cot(x) + 2 ~ sin(x) ~ cos(x) = tan(x) + cot(x)[/math]

-Dan
 
Hello Dan,

Thank you so much for your kindness and help! I didn't notice a LaTeX compiler is available in the forum.

Derek
 
This is useful information
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
11
Views
2K
Replies
28
Views
3K
Replies
2
Views
1K
Replies
7
Views
3K
Replies
2
Views
2K
Back
Top