Can You Solve the Hamilton-Jacobi Equation for the Linear Harmonic Oscillator?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on solving the Hamilton-Jacobi equation for the linear harmonic oscillator, specifically using the function \( S(p,q,\alpha) = \frac{m\omega}{2}(q^2+\alpha^2)\cot(\omega t) - m\omega q\alpha\csc(\omega t) \). This function is confirmed to be a solution for Hamilton's principal function with the Hamiltonian \( H(p,q) = \frac{p^2+m^2\omega^2q^2}{2m} \). The solution demonstrates that the function accurately generates the motion of the harmonic oscillator.

PREREQUISITES
  • Understanding of Hamilton-Jacobi theory
  • Familiarity with linear harmonic oscillators
  • Knowledge of Hamiltonian mechanics
  • Proficiency in calculus and differential equations
NEXT STEPS
  • Study the derivation of Hamilton's principal function in classical mechanics
  • Explore advanced topics in Hamiltonian dynamics
  • Learn about the applications of the Hamilton-Jacobi equation in quantum mechanics
  • Investigate the role of cotangent and cosecant functions in oscillatory motion
USEFUL FOR

Physicists, mathematicians, and students studying classical mechanics, particularly those focusing on Hamiltonian dynamics and the behavior of harmonic oscillators.

Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here's this week's problem (more along the lines of physics).

-----

Problem: Show that the function\[S(p,q,\alpha)=\frac{m\omega}{2}(q^2+\alpha^2)\cot(\omega t) - m\omega q\alpha\csc(\omega t)\]
is a solution of the Hamilton-Jacobi equation for Hamilton's principal function for the linear harmonic oscillator with Hamiltonian
\[H(p,q)=\frac{p^2+m^2\omega^2q^2}{2m}.\]
Show that this function generates a correct solution to the motion of the harmonic oscillator.

-----

Hints and Suggestions:

We first note that $S$ is a solution to the Hamilton-Jacobi equation if
\[H\left(q,\frac{\partial S}{\partial q}\right)+\frac{\partial S}{\partial t} = 0.\]

To show that $S$ generates a correct solution to the motion of the harmonic oscillator, you need to recover $q$ and $p$ from $S$. To do this, you need to use the transformation equations

\[\left\{\begin{aligned}Q &= \beta = \frac{\partial S}{\partial \alpha}\\ p &= \frac{\partial S}{\partial q}.\end{aligned}\right.\]

Last but not least, the following trigonometric identity may come in handy:

\[A\sin(\omega t) + B\cos(\omega t)= \sqrt{A^2+B^2}\sin(\omega t+\varphi)\text{ with }\varphi = \text{sgn}\,(B)\arccos\left(\frac{A}{\sqrt{A^2+B^2}}\right)\]

 
Physics news on Phys.org
No one took a bite at this week's question. Here's my work.

We first show that $S$ is a solution to the Hamilton-Jacobi equation\[H\left(q,\frac{\partial S}{\partial q}\right)+\frac{\partial S}{\partial t}=0.\]
Since $S$ is given by
\[S=\frac{m\omega}{2}(q^2+\alpha^2)\cot(\omega t) - m\omega q\alpha\csc(\omega t),\]
we see that
\[\frac{\partial S}{\partial q} = m\omega q\cot(\omega t) - m\omega\alpha\csc(\omega t)\]
and
\[\frac{\partial S}{\partial t} = -\frac{m\omega^2}{2}(q^2+\alpha^2)\csc^2(\omega t) + m\omega^2 q\alpha\csc(\omega t)\cot(\omega t).\]
It now follows that
\[\begin{aligned}H\left(q,\frac{\partial S}{\partial q}\right) &= \frac{1}{2m}\left[\left(\frac{\partial S}{\partial q}\right)^2 +m^2\omega^2q^2\right]\\ &= \frac{1}{2m}\left[\left(m\omega q\cot(\omega t) - m\omega\alpha\csc(\omega t)\right)^2 +m^2\omega^2q^2\right]\\ &= \frac{1}{2m}\left[m^2\omega^2q^2\left(\cot^2(\omega t)+1\right)-2m^2\omega^2q\alpha\csc(\omega t)\cot(\omega t)+m^2\omega^2\alpha^2\csc^2(\omega t)\right]\\ &= \frac{1}{2m}\left(m^2\omega^2(q^2+\alpha^2)\csc^2(\omega t)-2m^2\omega^2q\alpha\csc(\omega t)\cot(\omega t)\right)\\ &= \frac{m\omega^2}{2}(q^2+\alpha^2)\csc^2(\omega t) - m\omega^2q\alpha\csc(\omega t)\cot(\omega t)\\ &= -\frac{\partial S}{\partial t}.\end{aligned}\]
Therefore, $H\left(q,\dfrac{\partial S}{\partial q}\right) + \dfrac{\partial S}{\partial t}=0$.

To show that $S$ generates a correct solution solution to the motion of the harmonic oscillator, we need to recover $p$ and $q$ from $S$. To do that, we need to use the transformation equations
\[\left\{\begin{aligned}Q &= \frac{\partial S}{\partial \alpha}=\beta\\ p &= \frac{\partial S}{\partial q}.\end{aligned}\right.\]
With this, we see that
\[Q = \beta = \frac{\partial S}{\partial\alpha} = m\omega\alpha\cot(\omega t)-m\omega q\csc(\omega t).\]
This implies that
\[q=\alpha\cos(\omega t)-\frac{\beta}{m\omega}\sin(\omega t)=\frac{1}{m\omega}\left(m\omega\alpha\cos(\omega t)-\beta\sin(\omega t)\right).~~~~~(1)\]
Using the trigonometric identity
\[A\sin(\omega t) + B\cos(\omega t)= \sqrt{A^2+B^2}\sin(\omega t+\varphi)~~~~~(2)\]
with
\[\varphi = \text{sgn}\,(B)\arccos\left(\frac{A}{\sqrt{A^2+B^2}}\right)~~~~~(3)\]
we see that

\[\boxed{q=\dfrac{\sqrt{m^2\omega^2\alpha^2+\beta^2}}{m\omega} \sin(\omega t + \varphi_1) ;\qquad \varphi_1 = \text{sgn}\,(\alpha) \arccos\left(-\dfrac{\beta}{\sqrt{m^2 \omega^2 \alpha^2 + \beta^2}}\right)}. ~~~~~(4)\]

Now, we note that
\[p = \frac{\partial S}{\partial q} = m\omega q\cot(\omega t) - m\omega\alpha\csc(\omega t).~~~~~(5)\]
Substituting (1) into (5) yields
\[\begin{aligned}p &= \left(m\omega\alpha\cos(\omega t)-\beta\sin(\omega t)\right)\cot(\omega t) - m\omega a\csc(\omega t)\\ &= m\omega\alpha\cos^2(\omega t)\csc(\omega t) - \beta\cos(\omega t)-m\omega\alpha\csc(\omega t)\\ &= -m\omega\alpha(1-\cos^2(\omega t))\csc(\omega t)-\beta\cos(\omega t)\\ &= -m\omega\alpha\sin(\omega t)-\beta\cos(\omega t).\end{aligned}~~~~~(6)\]
Applying the trigonometric identity in (2) to (6), we see that
\[\boxed{p = \sqrt{m^2\omega^2\alpha^2+\beta^2} \sin(\omega t+\varphi_2);\qquad \varphi_2=\text{sgn}\,(-\beta)\arccos \left(-\dfrac{m\omega\alpha}{\sqrt{m^2\omega^2\alpha^2+ \beta^2}}\right)}. ~~~~~(7)\]
Thus, (4) and (7) together form a correct solution to the motion of the harmonic oscillator.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
9
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 13 ·
Replies
13
Views
1K