Can You Solve the Hamilton-Jacobi Equation for the Linear Harmonic Oscillator?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
The discussion revolves around solving the Hamilton-Jacobi equation for the linear harmonic oscillator using the proposed function S(p,q,α). The function is derived from the Hamiltonian H(p,q) = (p² + m²ω²q²) / (2m) and is intended to demonstrate the correct motion of the harmonic oscillator. Participants are encouraged to verify that S satisfies the Hamilton-Jacobi equation and generates accurate equations of motion. Despite the complexity, no responses have been provided to the problem yet. Engaging with this topic could enhance understanding of classical mechanics and the Hamilton-Jacobi framework.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here's this week's problem (more along the lines of physics).

-----

Problem: Show that the function\[S(p,q,\alpha)=\frac{m\omega}{2}(q^2+\alpha^2)\cot(\omega t) - m\omega q\alpha\csc(\omega t)\]
is a solution of the Hamilton-Jacobi equation for Hamilton's principal function for the linear harmonic oscillator with Hamiltonian
\[H(p,q)=\frac{p^2+m^2\omega^2q^2}{2m}.\]
Show that this function generates a correct solution to the motion of the harmonic oscillator.

-----

Hints and Suggestions:

We first note that $S$ is a solution to the Hamilton-Jacobi equation if
\[H\left(q,\frac{\partial S}{\partial q}\right)+\frac{\partial S}{\partial t} = 0.\]

To show that $S$ generates a correct solution to the motion of the harmonic oscillator, you need to recover $q$ and $p$ from $S$. To do this, you need to use the transformation equations

\[\left\{\begin{aligned}Q &= \beta = \frac{\partial S}{\partial \alpha}\\ p &= \frac{\partial S}{\partial q}.\end{aligned}\right.\]

Last but not least, the following trigonometric identity may come in handy:

\[A\sin(\omega t) + B\cos(\omega t)= \sqrt{A^2+B^2}\sin(\omega t+\varphi)\text{ with }\varphi = \text{sgn}\,(B)\arccos\left(\frac{A}{\sqrt{A^2+B^2}}\right)\]

 
Physics news on Phys.org
No one took a bite at this week's question. Here's my work.

We first show that $S$ is a solution to the Hamilton-Jacobi equation\[H\left(q,\frac{\partial S}{\partial q}\right)+\frac{\partial S}{\partial t}=0.\]
Since $S$ is given by
\[S=\frac{m\omega}{2}(q^2+\alpha^2)\cot(\omega t) - m\omega q\alpha\csc(\omega t),\]
we see that
\[\frac{\partial S}{\partial q} = m\omega q\cot(\omega t) - m\omega\alpha\csc(\omega t)\]
and
\[\frac{\partial S}{\partial t} = -\frac{m\omega^2}{2}(q^2+\alpha^2)\csc^2(\omega t) + m\omega^2 q\alpha\csc(\omega t)\cot(\omega t).\]
It now follows that
\[\begin{aligned}H\left(q,\frac{\partial S}{\partial q}\right) &= \frac{1}{2m}\left[\left(\frac{\partial S}{\partial q}\right)^2 +m^2\omega^2q^2\right]\\ &= \frac{1}{2m}\left[\left(m\omega q\cot(\omega t) - m\omega\alpha\csc(\omega t)\right)^2 +m^2\omega^2q^2\right]\\ &= \frac{1}{2m}\left[m^2\omega^2q^2\left(\cot^2(\omega t)+1\right)-2m^2\omega^2q\alpha\csc(\omega t)\cot(\omega t)+m^2\omega^2\alpha^2\csc^2(\omega t)\right]\\ &= \frac{1}{2m}\left(m^2\omega^2(q^2+\alpha^2)\csc^2(\omega t)-2m^2\omega^2q\alpha\csc(\omega t)\cot(\omega t)\right)\\ &= \frac{m\omega^2}{2}(q^2+\alpha^2)\csc^2(\omega t) - m\omega^2q\alpha\csc(\omega t)\cot(\omega t)\\ &= -\frac{\partial S}{\partial t}.\end{aligned}\]
Therefore, $H\left(q,\dfrac{\partial S}{\partial q}\right) + \dfrac{\partial S}{\partial t}=0$.

To show that $S$ generates a correct solution solution to the motion of the harmonic oscillator, we need to recover $p$ and $q$ from $S$. To do that, we need to use the transformation equations
\[\left\{\begin{aligned}Q &= \frac{\partial S}{\partial \alpha}=\beta\\ p &= \frac{\partial S}{\partial q}.\end{aligned}\right.\]
With this, we see that
\[Q = \beta = \frac{\partial S}{\partial\alpha} = m\omega\alpha\cot(\omega t)-m\omega q\csc(\omega t).\]
This implies that
\[q=\alpha\cos(\omega t)-\frac{\beta}{m\omega}\sin(\omega t)=\frac{1}{m\omega}\left(m\omega\alpha\cos(\omega t)-\beta\sin(\omega t)\right).~~~~~(1)\]
Using the trigonometric identity
\[A\sin(\omega t) + B\cos(\omega t)= \sqrt{A^2+B^2}\sin(\omega t+\varphi)~~~~~(2)\]
with
\[\varphi = \text{sgn}\,(B)\arccos\left(\frac{A}{\sqrt{A^2+B^2}}\right)~~~~~(3)\]
we see that

\[\boxed{q=\dfrac{\sqrt{m^2\omega^2\alpha^2+\beta^2}}{m\omega} \sin(\omega t + \varphi_1) ;\qquad \varphi_1 = \text{sgn}\,(\alpha) \arccos\left(-\dfrac{\beta}{\sqrt{m^2 \omega^2 \alpha^2 + \beta^2}}\right)}. ~~~~~(4)\]

Now, we note that
\[p = \frac{\partial S}{\partial q} = m\omega q\cot(\omega t) - m\omega\alpha\csc(\omega t).~~~~~(5)\]
Substituting (1) into (5) yields
\[\begin{aligned}p &= \left(m\omega\alpha\cos(\omega t)-\beta\sin(\omega t)\right)\cot(\omega t) - m\omega a\csc(\omega t)\\ &= m\omega\alpha\cos^2(\omega t)\csc(\omega t) - \beta\cos(\omega t)-m\omega\alpha\csc(\omega t)\\ &= -m\omega\alpha(1-\cos^2(\omega t))\csc(\omega t)-\beta\cos(\omega t)\\ &= -m\omega\alpha\sin(\omega t)-\beta\cos(\omega t).\end{aligned}~~~~~(6)\]
Applying the trigonometric identity in (2) to (6), we see that
\[\boxed{p = \sqrt{m^2\omega^2\alpha^2+\beta^2} \sin(\omega t+\varphi_2);\qquad \varphi_2=\text{sgn}\,(-\beta)\arccos \left(-\dfrac{m\omega\alpha}{\sqrt{m^2\omega^2\alpha^2+ \beta^2}}\right)}. ~~~~~(7)\]
Thus, (4) and (7) together form a correct solution to the motion of the harmonic oscillator.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
9
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K